
DISCRETE MATHEMATICS

Mircea Olteanu

2

Contents

1 Sets and Logic 7
1.1 Sets, sets of numbers . 7
1.2 Propositions, predicates, quantifiers 14
1.3 Methods of Proofs . 22
1.4 Prime numbers . 28

2 Relations and Functions 43
2.1 Introduction . 43
2.2 Relations of equivalence . 46
2.3 Relations of order . 48

3 Graphs 51
3.1 Directed Graphs . 51
3.2 Nondirected Graphs . 60

4 Finite Automata 65
4.1 Alphabets and Languages . 65
4.2 Deterministic and nondeterministic Finite Automata 69
4.3 The equivalence between d.f.a and n.d.f.a. 75
4.4 Turing Machines . 84

5 Boolean Algebras 99
5.1 Boolean Calculus . 99
5.2 Boolean functions . 111
5.3 Boolean equations . 116

3

4 CONTENTS

Foreword

This textbook contains basic topics in discrete mathematics: sets, logic, re-
lations, graphs, finite automata and boolean algebras. The text addresses to
the mathematicians, engineers, and students. It contains theoretical notions
and results, as well as worked-out examples.
The references were used as follows:
for the first chapter, [1], [2], [4], [6];
for the second chapter, [3], [5], [8], [9];
for the third chapter, [1], [2];
for the fourth chapter, [1], [3], [5], [9];
for the fifth chapter, [7].

5

6 CONTENTS

Chapter 1

Sets and Logic

1.1 Sets, sets of numbers

1. Definitions

Any collection of objects is called a set. The objects composing a set are
called the elements of the set. Usually, the sets are denoted by capitals:
A,B,X, Y, ... and the elements by small letters: a, b, x, y, The fact that x
is an element of the set X is denoted x ∈ X; if a is not an element of X we
put a 6∈ X. Two sets are said to be equal (we write A = B) if they have the
same elements. The set which has no elements is called the empty set (or
null set) and is denoted ∅.

Let A and B be two sets; we say that B is a subset of A (we write B ⊆ A
or A ⊇ B) if every element of B is an element of A. If B ⊆ A and A 6= B,
then we say that B is a proper subset of A and we write B ⊂ A. Let us
observe that A ⊆ A and ∅ ⊆ A for every set A.

Two obvious properties are:
(i) A = B if and only if A ⊆ B and B ⊆ A;
(ii) if A ⊆ B and B ⊆ C then A ⊆ C; this property is called transitivity.

If A, B are sets, then, their intersection, denoted A ∩ B is the set of
elements which belong to both A and B. The sets A and B are said to be
disjoints if A∩B = ∅. The union of the sets A and B, denoted by A∪B is
the set of elements which lie in A or B (the word ”or” is used in the inclusive
sense: if x ∈ A∪B, it is possible that x ∈ A∩B). The difference of A from
B, denoted by B \ A is the set {x ; x ∈ B and x 6∈ A}. If A ⊆ B, the the
difference B \ A is called the complement of A in B and is denoted CBA.

7

8 CHAPTER 1. SETS AND LOGIC

If X is a set, we denote by P(X) the power set of X which is defined as
the set of all subsets of X, i.e. P(X) = {A ; A ⊆ X}.

Some elementary properties of union, intersection and difference are sum-
marized below.

2. Proposition
For every sets A,B, C we have:

(i) if A ⊆ B then A ∪B = B
(ii) A ∪B = B ∪ A
(iii) A ∪ (B ∪ C) = (A ∪B) ∪ C
(iv) if A ⊆ B then A ∩B = A
(v) A ∩B = B ∩ A
(vi) A ∩ (B ∩ C) = (A ∩B) ∩ C
(vii) A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)
(viii) A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)
(ix) if A ⊆ B then B \ (B \ A) = A
(x) if C ⊇ B ⊇ A then C \ A ⊇ C \B
(xi) C \ (A ∪B) = (C \ A) ∩ (C \B)
(xii) C \ (A ∩B) = (C \ A) ∪ (C \B).
The last two properties are called De Morgan’s rules.

Proof
We illustrate the ideas by proving (iii) and (xi).

(iii) We first prove the inclusion A∪(B∪C) ⊆ (A∪B)∪C. If x ∈ A∪(B∪C),
then either x ∈ A or x ∈ B∪C; if x ∈ A then x ∈ A∪B and so x ∈ (A∪B)∪C.
If x ∈ B ∪ C, then either x ∈ B or x ∈ C; if x ∈ B, then x ∈ A ∪ B
and so x ∈ (A ∪ B) ∪ C; if x ∈ C then x ∈ (A ∪ B) ∪ C. Analogously,
(A ∪B) ∪ C ⊆ A ∪ (B ∪ C).
(xi) The inclusion C \ (A∪B) ⊆ (C \A)∩ (C \B): if x ∈ C \ (A∪B), then
x ∈ C and x 6∈ A∪B; it results that x 6∈ A and x 6∈ B, hence x ∈ C \A and
x ∈ C \B; in conclusion x ∈ (C \ A) ∩ (C \B).
The other inclusion: (C \A)∩ (C \B) ⊆ C \ (A∪B); if x ∈ (C \A)∩ (C \B),
then x ∈ (C \A) and (C \B), hence x ∈ C and x 6∈ A and x 6∈ B. It results
that x 6∈ A ∪B, so x ∈ C \ (A ∪B).

3. Definition
Let A,B be two nonempty sets; if a ∈ A and b ∈ B, we call (a, b) an

ordered pair. Two ordered pairs (a, b) and (c, d) are equal if and only if

1.1. SETS, SETS OF NUMBERS 9

a = c and b = d. The Cartesian product of A and B, denoted A × B is
the set of all ordered pairs: A × B = {(a, b) ; a ∈ A and b ∈ B}. If A = B
we can write A2 for A× A.

A relation is a set of ordered pairs; more precisely, a relation is a subset
R ⊆ A × B. The domain of the relation R is the set Dom(R) = {a ∈
A ; there is b ∈ B such that (a, b) ∈ R}. The range of R is Ran(R) = {b ∈
B ; there is a ∈ A such that (a, b) ∈ R}.

A function (map) defined on A with values in B (the usual notation is
f : A 7→ B) is a relation f ⊆ A×B such that for every a ∈ A there exists a
unique b ∈ B for which (a, b) ∈ f ; we denote b = f(a) if (a, b) ∈ f . The set
A is the domain and B is called the codomain of f .

The function f : A 7→ B is called injective (one to one) if from x 6= y it
results f(x) 6= f(y).
The range (image) of f , denoted f(A) or Ran(f) is the set
{y ∈ B there is x ∈ A such that f(x) = y}.
The function f : A 7→ B is called surjective (onto) if f(A) = B.

A function is said to be bijective if it is injective and surjective. If
f : A 7→ B is bijective map, the inverse map of f is the map denoted f−1,
defined by f−1 : B 7→ A, f−1(t) = s if f(s) = t. Obviously f(f−1(t)) = t
for every t ∈ B and f−1(f(s)) = s for every s ∈ A. The inverse map f−1 is
bijective, too.

3. Equinumerous sets
Let A and B be two sets. We say that A is equinumerous to B if there

exists a bijective map f : A 7→ B. This definition (Cantor) seems to be
according to our intuition. However, as we shall see, it has some (at first
sight) bizarre consequences; for example, a proper subset B ⊂ A can be
equinumerous to A.

A set A is said to be infinite if there exists a proper subset B ⊂ A which
is equinumerous to A. A set is called finite if it is not infinite.

4. The set of natural numbers
The axiomatic definition (Peano axioms) of what we usually call the set

of natural numbers (denoted by N) is as follows.
N1. There is an element 0 ∈ N.
N2. There is a map s : N 7→ N such that s : N 7→ N \ {0} is bijective.
N3. If S ⊆ N is a subset such that 0 ∈ S and s(n) ∈ S for every n ∈ S, then
S = N.

10 CHAPTER 1. SETS AND LOGIC

If n ∈ N, the element s(n) is called the successor of n; obviously, s(0) 6=
0. We denote s(0) = 1, s(1) = 2, etc. The set N \ {0} is usually denoted by
N?.
Axiom N2 implies that N is an infinite set.

The consequence of axiom N3 is the principle of induction:
Suppose P to be a statement such that:
(i) P (0) is true.
(ii) If P (n) is true, then P (s(n)) is true.
Then P (n) is true for every n ∈ N.
To prove it, consider the set S = {n ∈ N ; P (n) is true } and apply N3.

Starting from the axioms, one can define the usual operations on N (ad-
dition and multiplication) and prove their properties such as commutativity,
associativity, distributivity, etc. For example, n + 0 = n, n + 1 = s(n), etc.
We suppose known all these.

The natural order on N is the relation defined by n ≤ m if and only
if there exists k ∈ N such that n + k = m. It is simple to check that the
following properties hold for every n,m, k ∈ N:
(i) n ≤ n (reflexivity)
(ii) if n ≤ m and m ≤ n then n = m (antisymmetry)
(iii) if n ≤ m and m ≤ k then n ≤ k (transitivity).
This is a total ordering, i.e. for every n,m ∈ N, then n ≤ m or m ≤ n.

We now prove that N is well-ordered:

5. Proposition
Every non empty subset S ⊆ N has a least element, i.e. there exists

n0 ∈ S such that n0 ≤ m for every m ∈ S.
To prove this, let S be as above and let

T = {n ∈ N ; n ≤ x, for every x ∈ S}.

Obviously, 0 ∈ T and T 6= N, hence there exists n0 ∈ T such that n0 +1 6∈ T
(by induction). It is simple to check that n0 is the least element of S.

1.1. SETS, SETS OF NUMBERS 11

6. The cardinal of finite sets
Let A be a set. If A = ∅, then, by definition its cardinal (number of

elements) is 0. If A 6= ∅ and if there exists n ∈ N, n 6= 0 such that A is
equinumerous to {1, 2, ..., n}, then by definition the cardinal of A (denoted
card(A)) is n.

As we already mentioned, N is an infinite set. By definition, the cardi-
nal of N is ℵ0 (read: aleph0). A set which is equinumerous to N is called
countable (denumerable). A set is termed at most countable if it is finite
or countable.

7. Observation
A set A is countable if and only if it can be written as a sequence, i.e.

A = {a0, a1, a2, ...}.

Proof
If A = {a0, a1, a2, ...}, then the map f : N 7→ A, f(n) = an is a bijective.

Conversely, if A is countable, there exists a bijective map f : N 7→ A; if we
put an = f(n), then the proof is over.

We now prove the following important result:

8. Theorem
Every infinite set contains a countable subset.

Proof
Let A be an infinite set. Let a0 ∈ A; then A\{a0} 6= ∅, hence there exists

a1 ∈ A\{a0}, so a1 6= a0. At the step n, there exists an ∈ A\{a0, a1, ..., an−1},
so an is different from a0, a2, ..., an−1. Obviously, the set {a0, a1, ...} is count-
able and it is a subset of A.

A consequence of the previous result is:

9. Corollary
If A is an infinite set, then for every finite subset F ⊂ A, the sets A and

A \ F are equinumerous.
Proof
Let F = {a0, a1, ..., an−1}; then A\F is infinite, hence it contains a count-

able subset: {an, an+1, ...} ⊆ A \ F . The sets A and A \ F are equinumerous

12 CHAPTER 1. SETS AND LOGIC

because the map f : A \ F 7→ A,

f(x) =

{
x, if x ∈ A \ {a0, a1, ...ak−1, ak, ak+1, ...}

an−1, if x = an, n ∈ N?

is a bijection.

10. Proposition
Let X,Y be two non empty sets and let f : X 7→ Y .

i. If X and Y are countable sets, then X ∪ Y is countable.
ii. If f is injective and Y is countable, then X is countable.
iii. If f is surjective and X is countable, then Y is countable.
iv. The Cartesian product N×N is countable.

Proof
The first two assertions are obvious (exercise); for the third one, consider

the injective map g : Y 7→ X, g(y) = x, where x is an element such that
f(x) = y.
iv. The function f : N×N 7→ N, f(m,n) = 2m3n is injective.

It can be proved (by using iv above) that an at most countable union of
at most countable sets is at most countable.

11. The set of integers
For each natural number n ∈ N?, we select a new symbol denoted by −n;

the set of integers , denoted by Z is the union of N and all the symbols −n,
i.e. Z = {...,−3,−2,−1, 0, 1, 2, 3, ...}.
We suppose known the usual operations with integers; the natural order of N
can be extended to Z by −n ≤ −m if and only in m ≤ n for every m,n ∈ N?,
etc. Obviously, N ⊂ Z; we now prove that in fact they are equinumerous, so
card(Z) = ℵ0.

12. Proposition
The set of integers is countable.
Proof The set Z can be written as a sequence: Z = {0, 1,−1, 2,−2, 3, ...},

or equivalently, the map f : N 7→ Z,

f(n) =

{ −n
2
, if n is even

n+1
2

, if n is odd

is bijective.

1.1. SETS, SETS OF NUMBERS 13

13. The set of rational numbers
If m ∈ Z and n ∈ N? we call m

n
rational number. The usual notation

of the set of all rational numbers is Q. Two rational numbers m
n

and k
p

are
equals if mp = nk; the usual properties of rational numbers, operations, the
natural order, etc. are supposed to be known.

14. Proposition
The set of rational numbers is countable, hence card(Q) = ℵ0.
Proof
The set of positive rational numbers can be written as a sequence:

Alternative proof: the map f : Z ×N? 7→ Q, f(m,n) = m
n

is surjective;
now apply proposition 10(iii).

An example of a uncountable set is the following.

15. Example: an uncountable set
Let X be a set with 2 elements, for example, X = {0, 1} and let A =

{a1a2a3.... ; ai ∈ X}. Then the set A is uncountable.
Proof
We suppose that the conclusion is false, hence the set A can be written

as a sequence: A = {x1, x2, x3, ...}; by the definition of A, it results that

x1 = a1
1a

1
2a

1
3...., x2 = a2

1a
2
2a

2
3...., x3 = a3

1a
3
2a

3
3....,

with obvious notations. We consider the element y = b1b2b3.... such that for
every i ∈ N?, bi ∈ X and bi 6= ai

i. It results that y ∈ A but y 6= xn, for every
n ∈ N?, which is a contradiction.

16. Real numbers
The definition of the set R of real numbers is not the goal of this work.

Just let us remember that every real number x can be represented in the
decimal form as x = k, a1a2a3...., where k ∈ Z and ai ∈ {0, 1, 2, ..., 9}.
By using a similar argument as in example 15, prove:

17. Proposition
The set of real numbers is uncountable.

By definition, its cardinal is ℵ1.

14 CHAPTER 1. SETS AND LOGIC

1.2 Propositions, predicates, quantifiers

Logic is usually known as the science of reasoning. The symbolic techniques
are required for computer logic for at least two reasons:

(i) at the hardware level, the use of symbolic logic simplifies the design
of logic circuits to implement instructions;

(ii) at the software level, symbolic logic is helpful in the design of pro-
grams.

1. Definition
A proposition (sentence) is a statement (expression) which is either

true or false (but not both). If a proposition is true, it has the truth
value ”true” (denoted T or 1) and if it is false it has the truth value ”false”
(denoted F or 0).

In this section we discuss about propositions, their truth or falsity and
ways of connecting propositions to form new propositions. The new proposi-
tions which are obtained from the old ones by using symbolic connectives
are called compound propositions.

2. Definitions
Let p and q be two propositions.
The conjunction of p and q is true if the two propositions p, q are both

true and it is false otherwise; the conjunction is denoted by p∧q (read ”and”).
The disjunction of p and q is true if at least one of two propositions p,

q is true and it is false otherwise; the disjunction is denoted by p ∨ q (read
”or”).

We can summarize these definitions in the following truth table:

p q p ∧ q p ∨ q
1 1 1 1
1 0 0 1
0 1 0 1
0 0 0 0

The negation of the proposition p is true if p is false and it is false if
p is true. We denote the negation of p by p (read ”not” p). The truth table is:

1.2. PROPOSITIONS, PREDICATES, QUANTIFIERS 15

p p
1 0
0 1

The implication p → q (read ”if p , then q”) is false only when p is true
and q is false. It is defined by the truth table:

p q p → q
1 0 0
1 1 1
0 1 1
0 0 1

The connective → is called ”conditional”. In p → q, the proposition p is
called hypothesis (or assumption) and q is called conclusion. It is conve-
nient to note that if we draw a false conclusion from a true hypothesis, then
our argument must be faulty. In any other case, our argument is valid.

The proposition p ↔ q (read: ”p if and only if q”) is true if the two
sentences p, q are both true or false and it is false otherwise; the truth table
is:

p q p ↔ q
1 1 1
1 0 0
0 1 0
0 0 1

The connector ↔ is called ”double conditional”.

3. Definition
A tautology is a proposition which is true regardless of the truth values

of the basic propositions which comprise it. The propositions p and q are
called logically equivalent if the proposition p ↔ q is a tautology.

16 CHAPTER 1. SETS AND LOGIC

4. Proposition
Let p, q, r be propositions; the following propositions are tautologies.
(i) Commutative laws:
p ∧ q ↔ q ∧ p
p ∨ q ↔ q ∨ p
(ii) Associative laws:
(p ∧ (q ∧ r)) ↔ ((p ∧ q) ∧ r)
(p ∨ (q ∨ r)) ↔ ((p ∨ q) ∨ r)
(iii) Distributive laws:
(p ∧ (q ∨ r)) ↔ ((p ∧ q) ∨ (p ∧ r))
(p ∨ (q ∧ r)) ↔ ((p ∨ q) ∧ (p ∨ r))
(iv) De Morgan laws
(p ∨ q) ↔ (p ∨ q)
(p ∨ q) ↔ (p ∧ q)
(v) p ∨ p
(vi) (p → q) ↔ (q → p).
(vii) (p → q) ↔ (p ∨ q).

The propositions p → q and q → p are logically equivalent; the latter is called
the contrapositive of the first. It can be proved that the propositions p → q
and q → p are not logically equivalent; the latter is called the converse of
the first. The proposition p → q is called the inverse of p → q; it is logically
equivalent with the converse.

Proof Use the truth tables.

5. Inference laws
The usual problem of logic is how the truth of some propositions is related

with the truth of other propositions.
An argument is a set of two or more propositions related to each other
in such a way that all but one of them (the premises) are supposed to
provide support for the remaining one (the conclusion). The transition from
premises to conclusion is the inference upon which the argument relies.

Let us suppose that the premises of an argument are all true; the conclu-
sion may be either true or false. If the conclusion is true then the argument
is valid; if the conclusion is false, then the argument is invalid.

To test the validity of an argument, one follows the steps:
(i) Identify the premises and the conclusion of the argument.
(ii) Compute the truth table of the premises and of the argument.
(iii) Find the rows in which all premises are true.

1.2. PROPOSITIONS, PREDICATES, QUANTIFIERS 17

(iv) If in all rows of step (iii) the conclusion is true, then the argument is
valid; otherwise the argument is invalid.

The usual types of valid arguments are listed below:

6. Proposition
Let p, q, r be propositions; the following are tautologies:

(i) modus ponens (or method of affirming) (p ∧ (p → q)) → q;
(ii) modus tollens (or method of denial) ((p → q) ∧ q) → p;
(iii) law of syllogism ((p → q) ∧ (q → r)) → (p → r).

Proof
Use the truth tables.

7. Examples
Test if the following form an argument:
(i) Premises: The Earth is larger than the Sun; lemons are yellow. Con-

clusion: Politehnica University is in Bucharest.
This is not an argument because the truth or falsity of the conclusion is

not a consequence of the truth values of the premises.
(ii) Premises: Peter is a student; all students study mathematics. Con-

clusion: Peter study mathematics.
This is an argument; moreover, this is a valid argument. Indeed, let p:

”Peter is a student”, q: ”all students study mathematics” and r: ”Peter
study mathematics”; now use the truth tables.

8. Exercises
Let p and q be two propositions; test the validity of the following argu-

ments.
(i) P (premises): p → q, q; C (conclusion): p.
It is false (this is called converse error).
(ii)P : p → q, p; C: q.
It is false (inverse error).
(iii) Disjunctive syllogism: P : p ∨ q, q; C: p.
(iv) Rule of contradiction If c is a contradiction (i.e. a proposition

always false), then the argument:
P : p → c; C : p

is valid.

18 CHAPTER 1. SETS AND LOGIC

9. Predicates
Statements such as ”x ≤ 1”, ”x + y is even” (which contain one or more

variables) are usually found in mathematical assertions and in computer pro-
gramming. These statements are not propositions as long as the variables are
not specified. We call such expression a predicate (or propositional func-
tion); it involves one or more variables which belong to a set (called domain).
By substitution of the variables with values from the domain, one obtains
propositions (true or false). The set of the variables for which the predicate
is true is called the truth set.
We shall denote predicates with capitals letters: P (x), Q(x, y), etc, x,y...are
the free variables (variables).

10. Example
Let P (x) be the predicate ”2x2 + x − 1

2
= 0” with the domain the set

of natural numbers, N. Then the truth set is ∅. If we consider the domain
Z, the truth set is {−1} and if the domain is Q, then the truth set is {−1, 1

2
}.

11. Quantifiers
Let P (x) be a predicate (with one variable) with domain D.

We consider the following two propositions:
p : ”P (x) is true for all values of x ∈ D”.
q : ”P (x) is true for at least one value x ∈ D”.
The usual notations for the above propositions are:
∀x, P (x) (read ”for all x , P (x) is true”)
∃x, P (x) (read ”there exists x, P (x) is true”), respectively.
Sometimes (if the domain is not understood) one can write:
∀x ∈ D,P (x) and ∃x ∈ D,P (x), respectively.
The symbols ∀ and ∃ are called the universal quantifier and existential
quantifier, respectively.
Note that the proposition ∀x ∈ D,P (x) is false if P (x) is false for at least
one value x0 ∈ D; in this case x0 is called a counterexample.
The notation ∃! stands for ”there exists a unique”.

If P (x) and Q(x) are two predicates, then the proposition:

∀x ∈ D, P (x) → Q(x)

is called the universal conditional proposition (”for all x ∈ D, if P (x),
then Q(x)”). For example, ∀x ∈ R, if x ≤ −3, then |x| ≥ 3 is a universal

1.2. PROPOSITIONS, PREDICATES, QUANTIFIERS 19

conditional proposition.

12. Exercise
Write by using quantifiers the following propositions:

p : ”Every square is a rectangle”.
q : ”If a real number is an integer then it is a rational number”.
r : ”Every natural number is the sum of the squares of four integers” (La-
grange theorem).
s : ”Every even natural number greater than 2 is the sum of two primes” (this
is known as ”Goldbach conjecture” and it is not yet known if it true or false).

13. Negation of quantifiers
The following rules of negation hold:

∀x ∈ D, P (x) = ∃x ∈ D, P (x)

∃x ∈ D, P (x) = ∀x ∈ D, P (x)

As an example, the negation of the universal conditional proposition is:

∀x ∈ D, P (x) → Q(x) = ∃x ∈ D, P (x) → Q(x) = ∃x ∈ D, P (x) ∧Q(x)

14. Examples
(i) The negation of the Goldbach conjecture (see exercise 12) is (we denote

by P the set of prime numbers):

∀n ∈ N \ {1},∃p, q ∈ P , 2n = p + q = ∃n ∈ N \ {1},∀p, q ∈ P , 2n 6= p + q

(ii) The definition of the limit; L = limx→a f(x) if and only if

∀ε > 0,∃δ > 0, |x− a| < δ → |f(x)− L| < ε.

The negation is:

∃ε > 0, ∀δ > 0, |x− a| < δ → |f(x)− L| < ε =

= ∃ε > 0,∀δ > 0, |x− a| < δ, |f(x)− L| ≥ ε.

(iii) The definition of the Riemann integral: f is Riemann integrable on [a, b]
if, by definition:

∃I ∈ R,∀ε > 0,∃δ > 0,∀∆ = (xi)0≤i≤n a division of [a, b], with

20 CHAPTER 1. SETS AND LOGIC

‖ ∆ ‖< δ, ∀(ξi)1≤i≤n, ξi ∈ [xi−1, xi], then

∣∣∣∣∣I −
n∑

i=1

f(ξi)(xi − xi−1)

∣∣∣∣∣ < ε.

The negation is:

∀I ∈ R, ∃ε > 0, ∀δ > 0, ∃∆ = (xi)0≤i≤n a division of [a, b], with

‖ ∆ ‖< δ,∃(ξi)1≤i≤n, ξi ∈ [xi−1, xi], such that
∣∣∣∣∣I −

n∑
i=1

f(ξi)(xi − xi−1)

∣∣∣∣∣ ≥ ε.

15. Exercises
(i) Find the contrapositive, the converse and the inverse of the universal

conditional proposition.
(ii) Find the negations of the following propositions:

∀x,∃y, P (x, y)
∃x,∀y, P (x, y)
∀x,∃y, ∀z, ∀w,P (x, y, z, w)

(iii) Find the truth value of the following propositions:
∃!x ∈ R,∀y ∈ R, xy = y.
∀x ∈ Z,∃!y ∈ Z, xy2 = x.

16. Valid arguments with quantified premises
Prove that the following arguments are valid (P is the hypothesis and C

is the conclusion):
(i) Universal instantiation
P : ∀x ∈ D,P (x); a ∈ D.
C : P (a).
(ii) Universal modus ponens
P : ∀x ∈ D,P (x) → Q(x); ∃a ∈ D, P (a).
C : Q(a).
(iii) Universal modus tollens
P : ∀x ∈ D,P (x) → Q(x); ∃a ∈ D, Q(a).
C : P (a).

17. Invalid arguments with quantified premises
Prove that the following arguments are invalid.
(i) Converse error

1.2. PROPOSITIONS, PREDICATES, QUANTIFIERS 21

P : ∀x ∈ D, P (x) → Q(x);∃a ∈ D, Q(a);
C : P (a).
(ii) Inverse error
∀x ∈ D, P (x) → Q(x), ∃a ∈ D, P (a);
C : Q(a).

18. Exercise
(i) Fill in the true conclusion in the following argument according to

universal modus ponens:
∀k ∈ Z, if ∃m ∈ Z such that k = 2 ·m then k is even;
6 = 2 · 3.
Conclusion: ?
(ii) Fill in the true conclusion in the following argument according to

universal modus tollens:
All students in Politehnica study mathematics.
George does not study mathematics.
Conclusion: ?

19. Exercise
What kind of error does the following arguments exhibit:
(i) All students in Politehnica study mathematics.
Paul studies mathematics.
Hence Paul is student in Politehnica.
(ii) All students in Politehnica study mathematics.
Michael is not a student in Politehnica.
Hence Michael does not study mathematics.

Digital Logic Design
The use of digital systems is to manipulate discrete information, repre-

sented by physical quantities such as voltages and current. The smallest unit
is one bit (binary digit). Every electronic switch has two physical states (high
voltage and low voltage), so we associate the bit 1 to high voltage and 0 for
low voltage. A logic gate is the smallest processing unit in a digital system;
it has few bits as input and generates one bit as output. A logic circuit is
composed of several logic gates connected by wires; it has a group of bits as
input and generates one or more bits as output. The input-output table of
a logic circuit is the truth table of the output for all truth values of the input.

22 CHAPTER 1. SETS AND LOGIC

20. Basic logic gates
There are five basic logic gates.
(I) NOT gate (or inverter). The input has one bit, p; if p = 0, then the

output is 1; if p = 1, the output is 0. The symbol is p.
(II) AND gate. The input has two bits, p and q; The output is 1 if

p = q = 1 and it is 0 otherwise. It is denoted by p ∧ q.
(III) OR gate. The input has two bits, p and q; the output is 1 if either

p or q is 1 and it is 0 otherwise. Its symbol is p ∨ q.
(IV) NAND gate. The input has two bits, p and q; the output is is 0 if

p = q = 1 and it is 0 otherwise. Its symbol is p ∧ q.
(V) NOR gate. The input has two bits, p and q; the output is 0 if at

least one of p or q is 1 and it is 1 otherwise. Its symbol is p ∨ q.

21. Exercise
Write the input-output table (or table of truth) of the basic logic gates.

23. Example
Find the logic circuit of the output: p ∧ q ∨ r.

1.3 Methods of Proofs

This section contains few common methods of proofs in mathematics.
Loosely speaking, a mathematical theory (system) consists of ax-

ioms, definitions, theorems. An axiom is a statement assumed to be
true. The new concepts are introduced by definitions, while the theorems
(lemmas propositions, corollaries, etc) are statements that has been proved
to be true. An argument used to establish the truth of a theorem is called
a proof. Perhaps the most common example is the Euclidean geometry (for
example: the axiom of the parallels, the definition of the equilateral triangle,
Pythagoras’ theorem, etc).

1. Existence proofs
The proof of a theorem of the form ”∃x ∈ D such that P (x)” is called an

existence proof. Such a proof is constructive if either it finds a particular
x ∈ D such that the proposition P (x) be true or by exhibiting an algorithm
for finding an x for which P (x) be true. The proof is nonconstructive if
either it shows the existence of x ∈ D by using a previous result (axiom,

1.3. METHODS OF PROOFS 23

theorem) or by proving that the assumption that there is no such x ∈ D
leads to a contradiction.

2. Example

(i) Prove that there are natural numbers which are the sum of squares
of two natural numbers. It can be written as: ∃n ∈ N, ∃k, m ∈ N, n2 =
k2 + m2. One possible proof is 52 = 42 + 32. Another proof: 132 = 122 + 52.

(ii) As an example of algorithm, below we give the algorithm to convert
an integer n ∈ Z from base 10 to base 2:
First step: Write n = 2q0 + r0, where q0 is the quotient and r0 is the re-
mainder of the division of n by 2.
Second step: If q0 = 0, then n is in fact written in base 2; if not, then
divide q0 by 2 to obtain q0 = 2q1 + r1.
Third step: If q1 = 0, then the form of n in base 2 is n(2) = r1r0; if not,
repeat the process.
Fourth step: After a finite number of divisions (say, k + 1), the quotient
will be null: qk = 0. In this case, n(2) = rkrk−1...r1r0.

3. Universal propositions

Most theorems are of the form ∀x ∈ D, if P (x), then Q(x); here P (x) is
called hypothesis and Q(x) is the conclusion.

Let us suppose that the statement has the particular form ∀x ∈ D, then
Q(x); if the set D is finite, then one can check (eventually by using a com-
puter) the truth value of Q(x) for each x ∈ D. This is called the method of
exhaustion.

For example, prove that ”∀n ∈ {1, 2, 3, ...10}, n2 − n + 11 is a prime
number” or prove that ”23 is a prime number”.

If the set D is not finite, the most powerful method to prove a universal
theorem ”∀x ∈ D, if P (x), then Q(x)” is the method of generalizing from
a generic particular. This consists of picking an arbitrary fixed element
x ∈ D (called a generic element), check that the hypothesis P (x) is true
and then (by using rules of inference, definitions, axioms, previous theorems)
conclude that Q(x) is true. A direct proof is a method that consists of
showing that if P (x) is true, then Q(x) is true.

To prove that a universal proposition is false it is sufficient to find an
element x ∈ D such that P (x) is true and Q(x) is false. Such an element x
is called a counterexample.

24 CHAPTER 1. SETS AND LOGIC

4. Example
(i) Prove that the sum of two even integers is even.
Let m,n be two even integers; then there exist k1, k2 ∈ Z such that

n = 2k1 and m = 2k2. Then m + n = 2k1 + 2k2 = 2(k1 + k2), hence m + n is
even.

(ii) Prove that ∀x ∈ R, x2 + x + 1 > 0.
Compute ∆ = −3, etc.
(iii) Prove that the proposition ∀x ∈ R, if x < 1, then x2 < 1 is false; a

counterexample is x = −2.

Proof by contradiction
Suppose one wants to prove that the proposition p is true. A proof by

contradiction consists in supposing that p is false (so p is true) and then
derive a contradiction.

5. Examples
(i) If n2 is an even integer, then n is an even integer too.
(ii) Prove that

√
2 is irrational.

Proof
(i) Suppose the contrary, so n is odd. It results that there exists k ∈ Z

such that n = 2k+1. We get n2 = (2k+1)2 = 4k2 +4k+1 = 2(2k2 +2k)+1,
so n2 is odd; this is a contradiction with the hypothesis.

(ii) Suppose the contrary, i.e.
√

2 is not rational, hence it is rational; then
there exist m,n ∈ Z, with no common divisors such that

√
2 = m

n
. It results

that m2 = 2n2, hence m is even, i.e. there exists k ∈ Z such that m = 2k.
We get that 2n2 = m2 = 4k2, hence n2 = 2k2; it finally results that n is even
(see (i) above) which contradicts the assumption that m, n have no common
divisors.

6. Proof by contrapositive
We know that the propositions p → q and q → p are equivalent; proof

by contrapositive means to prove q → p instead of proving p → q.

1.3. METHODS OF PROOFS 25

7. Exercise
Adapt the proofs of example 5 by using the contrapositive method.

8. Principle of induction (strong form)
We already stated in this chapter one form of the principle of induction.

The so called strong form of this principle is as follows.

Let P (n) be predicate depending on a natural free variable n ∈ N. If it
satisfies the conditions:

(i) P (m0) is true for a m0 ∈ N.
(ii) P (n + 1) is true whenever P (k) is true for all n0 ≤ k ≤ n,

then P (n) is true for all naturals n ≥ m0.
Proof
We prove by contradiction; If the conclusion does not hold, then the set

S = {n ∈ N ; n ≥ m0 P (n) is false} is not empty. Let n0 be the least
element of S; if n0 = m0, this contradicts the assumption (i). If n0 > m0,
then P (m) is true for all m ≤ n0 − 1 but P (n0 is false, contradicting the
assumption (ii).

In the following we give few examples of applications of the principle of
induction.

9. Exercises
Prove by induction the following identities ∀n ∈ N?:

1 + 2 + ... + n =
n(n + 1)

n

12 + 22 + ...n2 =
n(n + 1)(2n + 1)

6
.

1 + q + q2 + ... + qn−1 =
1− qn

1− q
, ∀q ∈ R \ {1}

10. Exercise
Prove by induction the inequalities.
(i) ∀n > 3, 3n > n3.
(ii) ∀n ≥ 4, 2n < n!

26 CHAPTER 1. SETS AND LOGIC

(iii) Let h > −1; ∀n ∈ N : 1 + nh ≤ (1 + h)n.

11. Exercise
(i) Prove that ∀n ∈ N?, 4n − 1 is divisible by 3.
(ii) Prove that 23n − 1 is divisible by 7.

12. De Moivre Formula
Let t ∈ R; then for all n ∈ N the following formula holds:

(cos t + i sin t)n = cos(nt) + i sin(nt)

13. The Binomial Formula
For every n, k ∈ N, k ≤ n, the binomial coefficient is defined by

(
n
k

)
=

n!

k!(n− k)!

Then the Binomial Formula holds:

(a + b)n =
n∑

k=0

(
n
k

)
an−kbk

14. Fibonacci’s Sequence
In the XIII-th century, the Italian mathematician Leonardo Fibonacci

proposed the study of the following sequence

F0 = 0, F1 = 1, Fn+1 = Fn + Fn−1,∀n ≥ 1.

Such a definition is called a recurrence, or definition by induction. The
numbers in Fibonacci’s sequence are called Fibonacci’s numbers.

There are many interesting relations with Fibonacci’s numbers. Some of
them are listed below:

(i) F0 + F1 + ... + Fn = Fn+2 − 1.
(ii) F1 + F3 + ... + F2n−1 = F2n.
(iii) F0 − F1 + F2 − F3 + ...− F2n−1 + F2n = F2n−1 − 1.
(iv) F 2

0 + F 2
1 + ... + F 2

n = FnFn+1.
(v) Fn−1Fn+1 − F 2

n = (−1)n.

1.3. METHODS OF PROOFS 27

We prove by induction the first identity; the formula holds for n = 0. We
now suppose that it is true for all k ∈ N, 0 ≤ k ≤ n and we prove it for n+1:

(F0 +F1 + ...+Fn)+Fn+1 = Fn+2−1+Fn+1 = (Fn+2 +Fn+1)−1 = Fn+3−1

15. The formula for the Fibonacci’s numbers
Prove by induction that for all n ∈ N, the following formula holds:

Fn =
1√
5

((
1 +

√
5

2

)n

−
(

1−√5

2

)n)

The number 1+
√

5
2

≈ 1, 618 is called the golden ratio, usually denoted
by ϕ; it is the solution of dividing a segment in extreme and mean ratio.
More precisely, if we consider two segments of length a and b, respectively,
then ϕ = a+b

a
= a

b
. It results that ϕ is the positive solution of the quadratic

equation x2 − x − 1 = 0. It is also the ratio between the diagonal and the
side of a regular pentagon.

16. Counting subsets
(i) The power set
Let A be a set with n elements; prove by induction that the power set,

P(A), has 2n elements.

(ii) The number of ordered k-subsets
Let A be a set with n elements and let k ∈ N, 0 ≤ k ≤ n; by an ordered

k- subset of A we mean a k-tuple (a1, a2, ..., ak), with ai ∈ A, ∀i = 1, 2, ..., k.
Prove that the number of ordered k-subsets is n!

(n−k)!
.

(iii) The number of k-subsets
Prove by induction that the number of subsets of cardinal k of a set with

n elements is

(
n
k

)
= n!

k!(n−k)!
.

17. Examples of wrong proofs
(i) Let us consider the following (obviously false) proposition:
”All horses have the same color”
Find the mistake in the following ”proof” by induction:
Let H be the set of all horses; the induction will be with respect to the

cardinal of H, say n. If n = 1, then the proposition is obviously true. We

28 CHAPTER 1. SETS AND LOGIC

now suppose that the property is true if card(H) = k, for all 0 ≤ k ≤ n and
we prove it if card(H) = n + 1.
Let H = {h1, h2, ..., hn, hn+1}; according to the assumption, in every set
containing maximum n elements, all horses have the same color.

H = {h1, h2, ..., hn︸ ︷︷ ︸, hn+1} = {h1, h2, ..., hn, hn+1︸ ︷︷ ︸}

In the set {h1, h2, ..., hn} all the horses have the same color; by the same
argument, all the horses in the set {h2, h3, .., hn+1} have the same color, so
all horses {h1, h2, ...hn, hn+1} have the same color.

(ii) Same problem for the following proposition:
”Let d1, d2, ...dn be n ≥ 2 distinct lines on the plane such that no two of

which are parallel; then all these lines have a point in common.”
”Proof”
For n = 2 the assertion is obviously true. We assume now that the

assertion holds for n and we prove it for n + 1. Let d1, d2, ...dn, dn+1 be n + 1
lines as in the statement. By the inductive hypothesis, d1, d2, ...dn have a
point in common, say X. By the same reason, the lines d1, d2, ...dn−1, dn+1

have a point in common, say Y . The line d1 is in both above sets, so it
contains both points X and Y ; the same is true for dn−1, so it contains also
the points X and Y . It results that X = Y because the lines d1 and dn−1

have only one point in common, hence the ”proof” is over.

1.4 Prime numbers

In this section we investigate some common properties of the integers. Num-
ber theory is a very old field of mathematics: its roots go back about 2500
years ago, at the beginning of Greek mathematics.

Divisibility of integers
Let a, b ∈ Z, a 6= 0; we say that a divides b (we write a| b) if ∃c ∈ Z such

that b = ac. In this case, a is said to be a divisor of b or b is a multiple of a.
The following properties are obvious:
(i) ∀a ∈ Z?, a| a and a| − a.
(ii) ∀a ∈ Z, 1| a and − 1| a.
(iii) If a| b and b| c, then a| c.
(iv) If a| b and a| c then ∀m,n ∈ Z, a| (bm + cn).

1.4. PRIME NUMBERS 29

1. Theorem
Let a ∈ N? and b ∈ Z; then there exist q, r ∈ Z such that:

b = aq + r and 0 ≤ r < a

The number r is called the remainder and q is called the quotient.
Proof
We first show the existence of q and r. Let

S = {b− as ≥ 0 ; s ∈ Z}

Obviously, S ⊆ N and S 6= ∅. By the well-ordering property it results that
S has a smallest element, say r. We choose q ∈ Z such that b− aq = r. We
now prove by contradiction that r < a. If r ≥ a, then:

b− a(q + 1) = (b− aq)− a = r − a ≥ 0,

hence b−a(q +1) ∈ S. But b−a(q +1) < r, so we have a contradiction with
the fact that r is the smallest element of S. We now prove the uniqueness.
If

b = aq1 + r1 = aq2 + r2

with 0 ≤ r1 < a and 0 ≤ r2 < a, we get:

a| q1 − q2 | = | r1 − r2 | < a

It results that | q1 − q2 | < 1 and | q1 − q2 | ∈ N, so | q1 − q2 | = 0. Finally
q1 = q2 and r1 = r2.

2. Definition
Let a ∈ N, a ≥ 2; the number a is called prime if it has only two natural

divisors, namely 1 and a; it is called composite if it is not prime. The
number 1 is neither prime or composite.

3. Proposition
The set of primes is infinite.
Proof
Suppose the set of primes is not infinite, hence it is finite, so it can be

written as {p1, p2, ..., pn}. It results that there exists the largest prime num-
ber, say pn. Consider the natural number P = p1p2...pn + 1 (the product of

30 CHAPTER 1. SETS AND LOGIC

all prime numbers plus 1); then P is a prime number and it is larger than
pn, contradiction.

4. Proposition
(i) Let a, b ∈ Z and p a prime number. If p| ab then p| a or p| b.
(ii) Generalization: let a1, a2, ..., ak ∈ Z and p ∈ N be a prime. If

p | a1a2...ak then ∃i ∈ {1, 2, ..., k} such that p | ai.
Proof
(i) If a = 0 or b = 0, the result is obvious. Assume that a, b ∈ N?; if

p 6 | a, then we consider the set

S = {b ∈ N ; p | ab and p 6 | b}

We shall prove by contradiction that S = ∅; if S 6= ∅. From the well-ordering
property we get that S has a smallest element, say c. It results that p|ac
and p 6 | c; since p 6 |a, then necessarily c > 1. It can be proved (exercise)
that c < p. Finally we’ve got 1 < c < p; by applying theorem 1 there exist
q, r ∈ Z such that p = cq + r and 0 ≤ r < c. Since p is a prime number, it
results that r ≥ 1, so 1 ≤ r < c. We have:

ar = a(p− cq),

hence p | ar. In conclusion: p | ar and p 6 | r But r < c and r ∈ N, contra-
dicting that c is the smallest element of S.

5. Fundamental Theorem of Arithmetic
Every natural n ≥ 2 can be written as a product of primes and this

factorization is unique up to the order of the prime factors.
Proof
We first prove the existence by induction. If n = 2 the result is clear.

Assume now that n > 2 and that every m ∈ N, 2 ≤ m ≤ n − 1 can be
written as a product of primes. We shall prove that n can be written as a
product of primes. If n is a prime, the result is obvious. If n is not a prime,
then there exist n1, n2 ∈ N such that:

n = n1n2 and 2 ≤ n1 ≤ n− 1, 2 ≤ n2 ≤ n− 1

By the hypothesis, both n1 and n2 can be written as products of primes, so
n can be written as a product of primes; this proves the existence. To prove

1.4. PRIME NUMBERS 31

the uniqueness, let us suppose that:

n = p1p2...pr = p′1p
′
2...p

′
s,

where p1 ≤ p2 ≤ ... ≤ pr and p′1 ≤ p′2 ≤ ... ≤ p′s are all prime numbers. Since
p1| n = p′1p

′
2...p

′
s, by applying proposition 3 (ii), we get that ∃j ∈ {1, 2, ..., s}

such that
p1| p′j

Since p1 and p′j are both primes, it results p1 = p′j. Analogously, p′1| p1p2...pr,
so ∃i ∈ {1, 2, ..., r} such that p′1| pi, hence p′1 = pi. We have:

p1 = p′j ≥ p′1 = pi ≥ p1,

so p1 = p′1. We now continue reasoning as above starting from the equality:

p2p3...pr = p′2p
′
3...p

′
s

We finally get r = s and pi = p′i, ∀i ∈ {1, 2, 3, ..., r}.

Grouping together the equal primes in the above factorization, we get:

6. Corollary
Let n ∈ N, n ≥ 2. Then there exist primes p1 < p2 < ... < pr and

m1,m2, .., mr ∈ N such that

n = pm1
1 pm2

2 ...pmr
r

Moreover, this factorization is unique.

7. Greatest common divisor
Suppose that a, b ∈ N. Then there exists a unique d ∈ N a unique d ∈ N

such that:
(a) d | a and d | b
(b) if x ∈ N and x | b, then x | d.
Before proving, we recall that the number d is called the greatest com-

mon divisor (g.c.d.) of the numbers a and b and is denoted by d = (a, b).
Two numbers a and b are called coprime (or relatively prime) if (a, b) = 1.

32 CHAPTER 1. SETS AND LOGIC

Proof
If a = 1 or b = 1 then obviously d = 1. If a > 1 and b > 1, then we

consider the factorizations (as in corollary 5):

a = pm1
1 pm2

2 ...pmr
r , b = pn1

1 pn2
2 ...pnr

r

Mention that if pj is not a prime factor of a (or b) then the corresponding
exponent mj (or nj) is 0. The greatest common divisor of a and b is:

d =
r∏

j=1

p
min{mj , nj}
j

It’s easy to check that d | a and d | b; if x ∈ N and x | a and x | b, then

x = pv1
1 pv2

2 ...pvr
r

with

0 ≤ vj ≤ mj and 0 ≤ vj ≤ mj, ∀j = 1, 2, ..., r,

hence x | d. The uniqueness of d results from the uniqueness of the factor-
izations of a and b.

8. The least common multiple
Analogously one can prove that for every a, b ∈ N there exists a unique

m ∈ N such that:
(a) a | m and b | m
(b) if x ∈ N and a | x and b | x then m | x
The number m is called the least common multiple (l.c.m)of a and b

and is denoted by [a, b].

9. Proposition
For every a, b ∈ N, then there exist x, y ∈ Z such that

(a, b) = ax + by

Proof
The idea of the proof is to consider the set:

S = {ax + by > 0 ; x, y ∈ Z}

1.4. PRIME NUMBERS 33

Then by the well-ordering property of N it results that S has a least element,
say d; it can be proved that d is the g.c.d. of a and b (we leave the details of
the proof to the reader).

The proof of the existence of the g.c.d. is not an easy method to compute
it (at least for large numbers). One of the most famous (it goes back to
ancient Greek mathematicians) algorithms in mathematics is

10. Euclid’s Algorithm
Let a, b ∈ N such that a > b. Suppose that

q1, q2, ..., qn+1 ∈ Z

are the quotients and

0 < rn < rn−1 < ... < r1 < b

are the remainders of the divisions:

a = bq1 + r1,

b = r1q2 + r2,

r1 = r2q3 + r3,

.................

rn−2 = rn−1qn + rn,

rn−1 = rnqn+1.

Then (a, b) = rn.
Proof
The idea is to prove that if q1 is the quotient and r1 is the remainder of

the division of a at b, then the numbers a, b and b, r1 have the same greatest
common divisor, i.e. (a, b) = (b, r1). Obviously

(a, b) | (a− bq1) = r1 and (a, b) | b,

hence (a, b) | (b, r1). On the other hand,

(b, r1) | (bq1 + r1) = a and (b, r1) | b,

34 CHAPTER 1. SETS AND LOGIC

so (b, r1) | (a, b). It results (a, b) = (b, r1). By the same method one can
prove:

(b, r1) = (r1, r2) = (r2, r3) = ... = (rn−1, rn)

The result follows from the equality:

(rn−1, rn) = (rnqn+1, rn) = rn

Based on the previous result, the algorithm for computing the g.c.d. of a
and b has the following steps:

(i) If a < b then we interchange a and b.
(ii) If a > 0, divide b by a and get the remainder r; replace the number b

by r and return to step (i).
(iii) Else (if a = 0), then b is the g.c.d. and stop.

An important question (for all algorithms) is how long it takes? More
precisely, how many steps it takes before it stops. Of course, the Euclidian
algorithm depends on the magnitude of the numbers a and b, but not only.
In fact in can easily tested that the number of iterations is less than the sum
a + b. In the following we give few examples.

11. Examples
(i) For two consecutive numbers, the Euclidian algorithm stops in two

steps.
(ii) By using two consecutive Fibonacci numbers, show that the Euclidian

algorithm can last arbitrarily many steps.
Proof
(i) (a, a + 1) = (a, 1) = (0, 1) = 1
(ii) Let (Fk)k∈N be Fibonacci’s sequence; the remainder of Fk+1 divided

by Fk is Fk−1, since Fk+1 = Fk + Fk−1. It results:

(Fn+1, Fn) = (Fn, Fn−1) = ... = (F3, F2) = 1

The number of steps is n− 1.

1.4. PRIME NUMBERS 35

12. Theorem (the length of the Euclidian algorithm)
The number of steps of the Euclidian algorithm applied to a, b ∈ N? is at

most log2 a + log2 b.
Proof
The key idea of the proof is the following
Lemma
In the euclidian algorithm, in every iteration the product of the two cur-

rent numbers is reduced by a factor of 2 (at least). We first prove the lemma.
Let a, b ∈ N, 0 < b < a and let r be the remainder of the division of a at b.
At every step, the pair a, b is replaced by the pair r, b. We have:

a = bq + r ≥ b + r > 2r,

since b > r. It results br < 1
2
ab and the lemma is proved.

If we apply the euclidian algorithm to a, b, after k steps, the product of
the two current numbers is at most 2−kab. This product is at least 1, so
2k ≤ ab. By applying logarithms, we get:

k ≤ log2(ab) = log2 a + log2 b

13. Example
The last estimation is much better than our original estimation of the

number of iterations of the euclidian algorithm (the sum a + b was replaced
by the sum log2 a + log2 b). For example if we consider the problem of com-
puting the g.c.d. of two integers of 100 digits, then theorem 12 gives for the
number of steps the estimation k ≤ 2 log2 10100 = 200 log2 10 < 720.

14. Exercise
Let 0 < b < a be two integers such that the euclidian algorithm applied

to them takes n steps. Prove that a ≥ Fn+1 and b ≥ Fn.
Proof
By induction; if n = 1, then a ≥ 2 and b ≥ 1 is obviously true. We

suppose that the assertion is true for every 1 ≤ k ≤ n−1 and we prove it for
n. Suppose that the euclidian algorithm for computing (a, b) takes n steps.
Let a = bq + r (q is the quotient and r is the remainder); then 1 ≤ r < b.
The euclidian algorithm for computing (b, r) takes n− 1 steps, so (according

36 CHAPTER 1. SETS AND LOGIC

to the induction hypothesis) it results

b ≥ Fn and r ≥ Fn−1

We get:

a = bq + r ≥ b + r ≥ Fn + Fn−1 = Fn+1,

and the proof is over.

We continue with few basic results on prime numbers. An elementary
(but useful) property is:

15. Fermat’s (little) Theorem
Lat a ∈ Z and let p be a prime; then:

p | ap − a

In other terms, the integers a and ap give the same remainder when divided
by p.

Proof
Let a and p be as in the statement; we first prove the following observa-

tion:

p |
(

p
k

)
, ∀k ∈ {2, 3, ..., p− 1}

According to the definition of

(
p
k

)
, we have:

(
p
k

)
=

p(p− 1)....(p− k + 1)

k(k − 1)....1

The prime p divides the numerator but not the denominator (all the
factors are smaller than p and p is prime) so the observation is clear.

We now prove Fermat’s little theorem by induction on a ∈ N. If a = 0 it
is clearly true. Let a > 0 and let b ∈ N such that a = b + 1. We have:

ap − a = (b + 1)p − (b + 1) =

= bp +

(
p
1

)
bp−1 + ... +

(
p

p− 1

)
b + 1− b− 1 =

1.4. PRIME NUMBERS 37

= (bp − b) +

(
p
1

)
bp−1 + ... +

(
p

p− 1

)
b

The number (bp − b) is smaller than a, so according to the induction hy-
pothesis we have: (bp− b) | p ; all the other terms of the sum are divisible by
p by the above observation. This concludes the proof.

The previous theorem is usually called ”little” because Fermat is famous
for his ”last theorem”:

Fermat’s last theorem

Let n ∈ N, n ≥ 3. Then the sum of the n-th powers of two positive
integers is not the n-th power of a positive integer. The statement was for-
mulated in the 17-th century by Fermat, while the proof was found in 1995
by Andrew Wiles.

A natural (but difficult) problem about prime numbers is how are they
distributed. More precisely, one can ask, for example, how many primes are
between two natural numbers. It is simple to observe that the ”gaps” of
primes between two naturals are larger as we consider larger naturals. A
result in this direction is the following.

16. Proposition

For every natural number n there exist n− 1 consecutive composite nat-
urals.

Proof

Let n ∈ N; then the numbers:

n! + 2, n! + 3, n! + 4, ..., n! + n

are all composite. The first is divisible by 2, the second by 3, etc.

An important question about primes is how many primes are there up to
a given number n ? The usual notation for the number of primes up to n is
π(n). It is accepted that an exact formula for π(n) is impossible to get. The
basic result about π(n) is:

17. The prime number theorem

Let n ∈ N, n ≥ 2 and let π(n) be the number of primes between 1 and n;

38 CHAPTER 1. SETS AND LOGIC

then:

lim
n→∞

π(n)
n

ln n

= 1

Loosely speaking, π(n) is arbitrarily close to n
ln n

if n is sufficiently large.
The proof is extremely difficult (the result was conjectured in the 18-th

century and the proof was given at the end of the 19-th century); instead,
we illustrate it to answer the following question:

18. Example
How many primes (approximatively !) with 200 digits are there?
Obviously, the answer is π(10200) − π(10199). According to the prime

number theorem we have:

π(10200)− π(10199) ≈ 10200

ln(10200)
− 10199

ln(10199)
=

=
10200

200 ln 10
− 10199

199 ln 10
≈ 1.95 · 10197.

Testing for prime numbers
An important question in number theory (with crucial applications to

modern cryptography) is how can one decide if a natural number is a prime?
We end this section with some results in this direction.

If n ∈ N then one can test if n is prime by testing if it is divisible (or
not) by any natural k, 2 ≤ k < n. Of course, for large numbers (say, more
than 20 digits) this procedure is totally inefficient. A small improvement is
given by the following observation (the proof is left to the reader):

19. Observation
If n ∈ N is composite, then n has a prime divisor less or equal than

√
n.

However, the above observation does not solve the problem: the method
is still too slow for large numbers.

Better results (to prove that a number is not a prime) can be obtained
by using Fermat’s little theorem: if p is a prime, then p | ap − a, ∀a ∈ N .

1.4. PRIME NUMBERS 39

For instance (for an odd n), by taking a = 2, if n 6 |2n−1 − 1, then n is not a
prime; below we have some examples:

(i) 9 6 | 28 − 1 = 255

(ii) 15 6 | 214 − 1 = 16383

(iii) 21 6 |220 − 1 = 1048575

(iv) 25 6 | 224 − 1 = 16777215

The major problems of this method are listed below.

(i) The computation of 2n−1 (for large n).

(ii) Testing if n 6 | 2n−1 − 1 is complicated for large n.

(iii) If n | 2n−1−1 it results nothing about n simply because the converse
of Fermat’s little theorem is not true (a counterexample is 341 = 11 · 31);
moreover, there exist numbers n ∈ N such that n | an − a, ∀a ∈ N but n is
not a prime. These numbers are called Carmichael numbers; an example of
a Carmichael number is 561 = 3 · 11 · 17 and 561 | a561 − a, ∀a ∈ Z.

In the next we discuss how the above problems (i), (ii) and (iii) can be
partially solved.

20. Observation

For the computation of the powers of 2, one can repeat squaring starting
with a small number, as in the following examples (we compute 224 and 229):

(a) for computing 224:

23 = 8

26 = (23)2 = 64

212 = (26)2 = 4096

224 = (212)2 = 16777216
We reduced the number of operations from 23 to 5.

(b) the problem is that 29 is no more divisible by a (large) power of 2;
however, we can reduce the number of the operations in a similar way:

22 = 4

23 = 22 · 2 = 8

26 = (23)2 = 64

27 = 26 · 2 = 128

214 = (27)2 = 16384

228 = (214)2 = 268435456

229 = 228 · 2 = 536870912

40 CHAPTER 1. SETS AND LOGIC

The idea is to compute an odd power by multiplying the previous power
by 2 and to compute an even power by squaring an appropriate smaller
power. The general result is:

21. Proposition
Let n ∈ N; if n has k digits in base 2, then 2n can be computed by using

at most 2k multiplications.
Proof
We prove it by induction on k; if k = 1, clear. If n ≥ 2, has k + 1

digits in base 2, then we write n = 2q + r, where r is the remainder, so
r ∈ {0, 1}. It results that q has k digits in base 2, so we can compute 2q by
using at most 2k multiplications; since 2n = (2q)2 · 2r, we finally get at most
2k + 1 + 1 = 2(k + 1) multiplications.

We now discuss the second problem: testing n | 2n−1 − 1; for large n,
the number 2n−1 − 1 is too large, so one cannot test the divisibility by n.
However there exist a method to replace 2n−1−1 with a smaller number (less
than n2). The idea is to replace a power 2k larger than n by the remainder
of the division of 2k by n. The reason why this method holds is the following
elementary observation.

22. Observation
n | 2n−1 − 1 if and only if n | 2r − 1, where r is the remainder of the

division of 2n−2 by n.

23. Example
Let us test if 25 | 224 − 1; we need (as above) to compute 224. We start

to compute the powers of 2 and we test each time if the current power is less
less than 25; if yes, we continue by computing the next power. If not, we
divide it by 25 and we continue with the powers of the remainder.

23 = 8 < 25
26 = 64 > 25
64 = 25 · 2 + 14
Now we need to compute 212 = (26)2, but instead we compute 142 =

196 > 25
196 = 25 · 7 + 21
Finally we need to compute 224 = (212)2; instead, we compute

212 = 441 > 25.

1.4. PRIME NUMBERS 41

441 = 25 · 17 + 16
Now instead testing 25 | 224 − 1, we test if 25 |16 − 1; since this is not

true, we get that 25 is not a prime.

We now discuss the third question: what if n | an − 1, ∀a ∈ N ? We
already have an example of a Carmichael number: 561. An improvement of
the test based on Fermat’s little theorem is the following:

24. The Miller-Rabin test
Let n > 1 be an odd natural number. Suppose we want to test if n

is a prime. Let a ∈ N, 0 ≤ a ≤ n − 1. If n | an − a, then we factor
an − a = a(an−1 − 1) = as long as we can by using usual identities like
x2−1 = (x−1)(x+1), x3−1 = (x−1)(x2 +x+1), etc. If n is a prime, then
it must divides at least one the factors (for all a); if this is not true, then
n is not a prime number. Of course, if the test fails (n divides one factor),
then nothing can be said. However, it can be proved that the test fails with
a probability of 0.5. So, if we repeat the test 10 times (for 10 different values
of a) and each time the test fails (n divides one factor), then the probability
for n not to be a prime is about 2−10.

25. Example
We apply the Miller-Rabin test for 561. We factor a561 − a:

a561 − a = a(a560 − 1) =

= a(a280 − 1)(a280 + 1) =

= a(a140 − 1)(a140 + 1)(a280 + 1) =

= a(a70 − 1)(a70 + 1)(a140 + 1)(a280 + 1) =

= a(a35 − 1)(a35 + 1)(a70 + 1)(a140 + 1)(a280 + 1)

If 561 would be a prime number, then according to Fermat’s little theorem,
it should divide a561 − a, ∀a ∈ N (this is in fact true); it results (561 was
supposed to be prime) that 561 must divide at least one of the factors; but
for a = 2 none of the factors is a multiple of 561, so 561 is not a prime number.

42 CHAPTER 1. SETS AND LOGIC

Chapter 2

Relations and Functions

2.1 Introduction

1.Definition
Let M be a non empty set and let M × M = {(x, y) |x, y ∈ M} be the
cartesian product. A relation on the set M is every subset ξ ⊆ M ×M . If
(x, y) ∈ ξ, we denote xξ y and we say that ”x is in the relation ξ with y”. If
(x, y) 6∈ ξ, then we denote x 6 ξ y.

2.Examples
i. Let M = Z be the set of integers; for every m, k ∈ Z let mρk ⇔ m | k ,
(”m divide k”, or ”k is a multiple of m”); by definition, we put 0ρ 0. For
example, 2 | 4 and 3 6 | − 4.
ii. Let R be the set of real numbers and let xρ y ⇔ x ≤ y (the relation ”less
or equal”).
iii. Let n ∈ N? be a fixed natural number. The relation ”congruence modulo
n” is defined on Z as x ≡n y ⇔ n| x− y, ∀x, y ∈ Z.
iv. The relation of equality can be defined on any nonempty set M :
xρ y ⇔ x = y.
v. The universal relation can be defined on any non empty set M :
xρ y, ∀x, y ∈ M .
vi. On the set of all students in the University, one can define the relation
xρ y ⇔ the students x and y are in the same group.

43

44 CHAPTER 2. RELATIONS AND FUNCTIONS

3.Observation
Let M 6= ∅; it is possible to regard functions (mappings) from M to M as a
special case of relations.
Let (M, ρ) be a relation such that for every x ∈ M there is exactly one
element y ∈ M such that xρ y. Such a relation is in fact a function fρ : M 7→
M defined by

fρ(x) = y ⇔ xρ y.

4.Definitions
Let (M, ρ) be a relation.
i. ρ is reflexive iff xρ x, ∀x ∈ M .
ii. ρ is symmetric iff xρ y ⇒ yρ x, ∀x, y ∈ M .
iii. ρ is antisymmetric iff xρ y and yρ x ⇒ x = y, ∀x, y ∈ M .
iv. ρ is transitive iff xρ y and yρ z ⇒ xρ z.

5. Exercise
Check the above properties for the relations defined in Example 2.

6. Operations with relations
Let M 6= ∅ and let ρ and φ be two relations on M .
The union of ρ and φ is defined as

ρ ∪ φ = {(x, y) ; (x, y) ∈ ρ or (x, y) ∈ φ},

i.e., xρ ∪ φ y ⇔ at least one of the relations xρ y , xφ y holds.
Analogously, the intersection of ρ and φ is defined by

xρ ∩ φ y ⇔ both xρ y and xφ y hold.

The inverse of the relation ρ, denoted by ρ−1 is:

xρ−1 y ⇔ yρ x.

The product of the relations ρ and φ, denoted by ρφ is defined by:

xρφ y ⇔ ∃z ∈ M such that xρ z and zφ y hold.

A special case is when ρ = φ; the relation ρ2 is:

xρ2 y ⇔ ∃z ∈ M such that xρ z and zρ y.

2.1. INTRODUCTION 45

By recurrence, one can define the n-th power of the relation ρ by:

xρn y ⇔ ∃z0 = x, z1, z2, ..., zn = y elements in M such that :

z0ρ z1, z1ρ z2, ..., zn−1ρzn.

The transitive closure of the relation ρ is denoted by ρ and is defined in
the following way:

xρ y ⇔ ∃n ∈ N and elements z0 = x, z1, z2, ..., zn = y such that :

z0ρ z1, z1ρ z2, ..., zn−1ρzn.

In fact, by using the powers of ρ and the union, the transitive closure can be
written in the form:

ρ = ρ ∪ ρ2 ∪ ρ3 ∪ ... ∪ ρn ∪

7. The matrix associated to a relation
Let M be a non empty finite set with n elements, M = {x1, x2, ..., xn}. If ξ
is a relation on M , the matrix associated to ξ, is, by definition the n× n

matrix Aξ = (aij)ij, with aij =

{
1 if xiξ xj

0 if xi 6 ξ xj
. The matrices associated to

relations consist only of zeros and ones. We define the following operations
(so called Boolean) on the set {0, 1}:

0 ∨ 0 = 0, 0 ∨ 1 = 1, 1 ∨ 0 = 1, 1 ∨ 1 = 1

0 · 0 = 0 , 0 · 1 = 0 , 1 · 0 = 0 , 1 · 1 = 1.

We can now investigate the operations on matrices corresponding to the op-
erations on relations. Let ρ and φ be two relations on M with the associated
matrices Mρ = (aij) and Mφ = (bij).
Then the matrix of the union ρ ∪ φ is Mρ∪φ = (aij ∨ bij) and the matrix of
the intersection ρ ∩ φ is Mρ∩φ = (aij · bij).
The matrix of the product ρφ is Mρφ = (ai1 · b1j ∨ ai2 · b2j ∨ ... ∨ ain · bnj).
The matrix of the inverse ρ−1 is the transpose MT

ρ = (aji).
The matrix of the transitive closure of ρ is the matrix of the union of all the
powers of of ρ.

46 CHAPTER 2. RELATIONS AND FUNCTIONS

8. Exercise
Let M = {1, 2, 3} and the relations (on M):

xρ y ⇔ x divide y

xφ y ⇔ x = y + 1.

Find the matrices of the relations ρ, φ, ρ ∪ φ, ρ ∩ φ, ρ · φ, ρn, φn, ρ, φ.

2.2 Relations of equivalence

9. Definition.
A relation (M,∼) is a relation of equivalence on M iff it is reflexive,
symmetric and transitive.

10. Examples
i. The equality is a relation of equivalence.
ii. The universal relation is a relation of equivalence.
iii. The congruence mod n is a relation of equivalence.
iv. On the set of integers Z let m ∼ k iff m | k and k |m; then ∼ is an
equivalence on Z.
v. Let f : M 7→ R an arbitrary function and let x ∼f y ⇔ f(x) = f(y).
Then ∼f is an equivalence on M . Obviously, ∼f is the equality iff f is injec-
tive and ∼f is the universal relation iff f is constant.

11. Definition
Let (M,∼) be a relation of equivalence; for every x ∈ M we define the class

of equivalence of x as x̂ = {y ∈ M | y ∼ x}. The set M̂ = {x̂ | x ∈ M} is
called the set of classes of equivalence, or the factor set.

12. Proposition
Let (M,∼) be a relation of equivalence; then:
a. x̂ 6= ∅,∀x ∈ M .
b. Let x, y ∈ M ; if x ∼ y then x̂ = ŷ and if x 6∼ y then x̂ ∩ ŷ = ∅.
c.

⋃
x∈M x̂ = M .

Proof a. x ∈ x̂,∀x ∈ M (by using the reflexivity).
b. Let x, y ∈ M such that x ∼ y; we prove that x̂ = ŷ by double inclusion;
first, x̂ ⊆ ŷ. Let z ∈ x̂; then z ∼ x and x ∼ y implies z ∼ y (by the

2.2. RELATIONS OF EQUIVALENCE 47

transitivity), hence z ∈ ŷ. Analogously, ŷ ⊆ x̂.
Let us now suppose that x 6∼ y and that x̂∩ ŷ 6= ∅. Let t ∈ x̂∩ ŷ; then t ∼ x
and t ∼ y, hence x ∼ y, contradiction.
c. Obviously, because x ∈ x̂,∀x ∈ M .

13. Definition
Let M 6= ∅; a partition on M is a family A = (Ai)i∈J such that:
a. Ai ⊆ M, ∀i ∈ J .
b. Ai ∩ Aj = ∅ , ∀i 6= j.
c.

⋃
i∈J Ai = M .

14. Theorem
a. Let (M,∼) be a relation of equivalence. Then the family M̂ = (x̂)x∈M is
a partition on M .
b. Let A = (Ai)i∈J be a partition on a non empty set M . Then the relation
x ∼A y ⇔ ∃i ∈ J such that x, y ∈ Ai is a relation of equivalence on M and
the associated set M̂ of classes of equivalence is the partition A.
Proof a. The fact that the family of classes of equivalence is a partition was
proved in Proposition 7.
b. The fact that ∼A is a relation of equivalence is obvious. Let now x ∈ M ;
then there is i ∈ J such that x ∈ Ai. We claim that x̂ = Ai. If y ∈ x̂, then
y ∼A x; by the definition of ∼A it results y ∈ Ai. If y ∈ Ai, then y ∼A x,
hence y ∈ x̂.

15. Exercise
Prove that the two constructions of the above Theorem are inverse one to
each other, i.e. given a relation of equivalence (M,∼) we define (as in a) the

partition M̂ ; we now associate to this partition the relation of equivalence
∼M̂ (as in b). It results that ∼ =∼M̂ . Conversely, we start with a partition
A and we define the relation of equivalence ∼A (as in b). We now associate

to ∼A the partition M̂ , defined by its classes of equivalence (as in a). It

results that A = M̂ .

16. Examples
i. If the relation is the equality, then each class of equivalence contains one
element: x̂ = {x}.
ii. For the universal relation, there is only one class of equivalence.

48 CHAPTER 2. RELATIONS AND FUNCTIONS

iii. If M = Z and m ∼ k ⇔ m| k and k| m, then 0̂ = {0} (by definition)
and m̂ = {−m,m},∀m 6= 0.
iv. Let n ∈ N? and let (Z,≡n) be the congruence (mod n). If k ∈ Z,

then k̂ = {m ∈ Z ; n |m − k}. There are n classes of equivalence, 0̂ =

{mn ; m ∈ Z}, 1̂ = {mn + 1 ; m ∈ Z}, 2̂ = {mn + 2 ; m ∈ Z}, ..., n̂− 1 =
{mn+(n− 1) ; m ∈ Z}. The set of classes of equivalence is denoted (in this
case) by Zn.
v. Let T = {z ∈ C ; |z| = 1} be the unit circle and let n ∈ N, n ≥ 2 be
a fixed natural number. Let Un = {z ∈ T ; zn = 1}. On T we define the
relation z ∼n w ⇔ zw−1 ∈ Un, ∀z, w ∈ T . Prove that ∼n is an equivalence
on T and the class of equivalence of an element z ∈ T is ẑ = {zt ; t ∈ T}.

17. Exercise
(a) Let f : M 7→ R an arbitrary function and let x ∼f y ⇔ f(x) = f(y). If

x ∈ M , then x̂ = {y ∈ M ; f(x) = f(y)}. Let M̂ be the factor set and let

g : M̂ 7→ R, g(x̂) = f(x). Then the map g is well defined and injective.
Solution To prove that g is well defined we have to prove that if x̂ = ŷ, then
g(x̂) = (ŷ), i.e. if x ∼f y, then f(x) = f(y); this is a direct consequence of
the definition of ∼f .
Let now suppose that g(x̂) = g(ŷ). Then, by the definition of g it results
that f(x) = f(y), hence x ∼f y; it results that x̂ = ŷ, hence g is injective.

2.3 Relations of order

18. Definition
A relation (M, ρ) is called a relation of order iff it is reflexive, antisym-
metric and transitive.
The relation of order is total, or the set M is totally ordered by the rela-
tion ρ iff ∀x, y ∈ M ⇒ xρ y or yρ x.

19. Examples
i. The equality is a total order; the trivial relation is not antisymmetric.
ii. The usual sets of numbers N, Z, Q, R are totally ordered by the usual
relation ≤ (”less or equal”).
iii. On the set of natural numbers, N , let mρ n ⇔ m| n and by definition
0ρ 0. Then ρ is a relation of order but it is not total.

2.3. RELATIONS OF ORDER 49

iv. On the set of integers, Z, the above relation (”divide”) is no more anti-
symmetric.
iv. Let f : M 7→ R and let xρfy ⇔ f(x) ≤ f(y). The relation ρf is reflexive
and transitive; it is also antisymmetric iff f is injective. If this is true, then
ρf is a total order on M .
v. Let X 6= ∅ and let P(X) = {A ; A ⊆ X}. We consider on P(X) the
usual relation of inclusion: A ⊆ B. Then the set (P(X),⊆) is an ordered
set. It is totally order iff X has only one element.

20. Definitions
Let (M,≤) be an ordered set and let A ⊆ M .
a. An element x ∈ M is called an upper bound of A iff a ≤ x,∀a ∈ A.
b. An element y ∈ M is called a lower bound of A iff y ≤ a,∀a ∈ A.
c. The subset A is called upper bounded iff the set of its upper bounds is
not empty and it is called lower bounded iff the set of its lower bounds is
not empty. The subset A is called bounded if it is both upper bounded and
lower bounded.
d. Let A be an upper bounded subset. An element ψ ∈ M is called the
least upper bound of A (denoted sup(A)) if:
i. ψ is an upper bound of A, i.e. a ≤ ψ, ∀a ∈ A, and
ii. if x ∈ M is an upper bound of A, then ψ ≤ x.
e. Let A be a lower bounded subset. An element φ ∈ M is called the great-
est lower bound of A (denoted inf(A)) if:
i. φ is a lower bound of A, i.e. φ ≤ a, ∀a ∈ A and
ii. If y ∈ M is a lower bound of A, then y ≤ φ.
If sup(A) ∈ A, then it is called the greatest element of A and if inf(A) ∈ A,
then it is called the least element of A.

21. Example
Let (Q,≤) be the set of rational numbers with the usual order; then the
subset A = {x ∈ Q ; x2 < 2} is upper bounded, but it has not a least upper
bound. In the set (R,≤) of real numbers with the same order, the same set
A has a least upper bound, namely

√
2. Cantor axiom asserts that in the set

of real numbers every upper bounded subset has an upper bound.

22. Example
Let (N, |) be the set of natural numbers ordered by the relation ”divide”.
Let A = {6, 8, 12}; then A is bounded and sup(A) = 2, inf(A) = 24.

50 CHAPTER 2. RELATIONS AND FUNCTIONS

Generalize the above example.

23. Exercise
i. Let X 6= ∅ and let (P(X),⊆). If A = {H, K} ⊆ P(X), then sup(A) =
H ∪K and inf(A) = H ∩K.
Generalize to an arbitrary subset A ⊆ P(X).
ii. Let A,B ∈ P(X). Prove that:
A = B ⇔ ∀G ∈ P(X) A ∩G = B ∩G and A ∪G = B ∪G.
iii. Let A,B ∈ P(X). Prove that:
A = B ⇔ ∃G ∈ P(X) such that A ∩G = B ∩G and A ∪G = B ∪G.

24. Exercise
Let M 6= ∅ and let ρ be a reflexive and transitive relation on M . On M we
define the relation:

x ∼ρ y ⇔ xρ y and yρ x.

i. Prove that ∼ρ is an equivalence on M .

ii. Let M̂ be the factor set associated to the relation ∼ρ. On M̂ we define

the relation x̂ ≤ ŷ ⇔ xρ y. Prove that ≤ is well defined and (M̂,≤) is an
ordered set.
iii. Apply the above construction to the following case: (M,ρ) = (Z, |).

Chapter 3

Graphs

3.1 Directed Graphs

1. Definitions
A directed graph (digraph) is a 4-tuple G = (V, A, i, t), where:
V and A are non empty sets; the elements of V are called vertices and the
elements of A are called arcs.
i and t are two maps i, t : A 7→ V ; i(a) is called the initial vertex of the arc
a and t(a) is called the terminal vertex of the arc a.
Two vertices v, w ∈ V are called connected (in G) if ∃a ∈ A such that
i(a) = v and t(a) = w. We represent this property by the picture: v

a−→ w.
Two vertices are adjacent if ∃a ∈ A such that v

a−→ w or w
a−→ v.

Let v ∈ V . We denote by deg+v (input degree) the number of arcs which
”enter” in v and by deg−v (output degree) the number of arcs which ”go
out” from v. The degree of v is degv = deg+v + deg−v.
A vertex v ∈ V is called initial if deg+v = 0 and it is called terminal if
deg−v = 0.
A digraph is said to be with simple links iff for all vertices v, w ∈ V , there
is at most one arc a ∈ A such that v

a−→ w.
A digraph is finite iff it has a finite number of vertices and arcs.

2. Remark
In order to ”visualize” a graph, we consider V as a set of points and A as a
set of lines (arcs) connecting the vertices.

51

52 CHAPTER 3. GRAPHS

3. Examples
i. Let V = {v, w}, A = {a, b, c} and the maps i and t defined by
i(a) = v, i(b) = v, i(c) = v, t(a) = v, t(b) = w, t(c) = w.

ii. Three typical graphs:

Gω : 0 −→ 1 −→ 2 −→

Pn : 0 −→ 1 −→ 2 −→ −→ (n− 1) −→ n

Qn :

4. Exercise
i. On the following representation, find the digraph G = (V,A, i, t).

ii. Represent the following digraph: G = (V,A, i, t), where

V = {x, y, z, u}, A = {a, b, c}

i(a) = x, i(b) = y, i(c) = z, t(a) = x, t(b) = x, t(c) = u.

3.1. DIRECTED GRAPHS 53

iii. The same question for G = (V, A, i, t), where:

V = N,A = {aj}j∈N , i(aj) = j, t(aj) = j + 2.

5. Remark
All type of networks (computers, water supply, telecommunications, trans-
port, distribution) can be represented by digraphs.

6. Definition
Two digraphs G = (V, A, i, t) and G′ = (V ′, A′, i′, t′) are said to be isomor-
phic if there are two bijective maps hA : A 7→ A′ and hV : V 7→ V ′ such
that: hV ◦ i = i′ ◦ hA and hV ◦ t = t′ ◦ hA. The pair h = (hA, hV) is called
a graph isomorphism. If the maps hA and hV are no more bijective, the h
is simply a morphism. The idea of the definition of isomorphic digraphs is
represented below:

v
a−→ w in G ⇔ hV (v)

hA(a)−→ hV (w) in G′.

Let G = (V, A, i, t) be a digraph and let V ′ ⊆ V, A′ ⊆ A such that i(A′) ⊆ V ′

and t(A′) ⊆ V ′. Let i′ and t′ be the restrictions of i and t to A′. Then the
digraph G′ = (V ′, A′, i′, t′) is called a subgraph of G.

7. Example
Let G = (V, A, i, t) be a digraph and let v ∈ V a fixed vertex and let:
A′ = {a ∈ A ; i(a) = v or t(a) = v} and
V ′ = {w ∈ V ; ∃a ∈ A′ such that i(a) = w or t(a) = w}.
Then G′ = (V ′, A′, i′, t′) is the subgraph generated by v.

8. Exercise
In the following representation, find the subgraphs generated by every vertex.

54 CHAPTER 3. GRAPHS

9. Definition
Let G = (V, A, i, t) be a digraph. A path in G is defined by two ver-
tices, v, w ∈ V and a finite number of arcs a1, a2, ...an ∈ A such that there
are v1, v2, ..., vn−1 ∈ V with the properties: i(a1) = v, t(a1) = v1, i(a2) =
v1, t(a2) = v2, ..., i(an) = vn−1, t(an) = w. The representation is:

v
a1−→ v1

a2−→ v2........ −→ vn−1
an−→ w

The natural number n is called the length of the path. The vertices v and
w are the initial vertex and terminal vertex, respectively, of the path.
We can denote a path by its vertices: vv1v2...vn−1w. Such a path connects
the vertices v to w.
If v = w, the path is called closed (circuit). A closed path of length 1 is
called a curl. Obviously, every path is a subgraph. In fact, to define a path
in G is equivalent to define a morphism from Pn (or Qn, if the path is closed),
to G (cf. Example 3).
The null path is defined by n = 0, i.e, it connects every vertex to itself and
the length is 0.

10. Theorem
Let G = (V, A, i, t) be a finite digraph with simple links such that ∀v, w ∈
V. ∃a ∈ A such that v

a−→ w or w
a−→ v. Then there are paths which pass

through all vertices one time only (such a path is called a Hamiltonian path).
Proof
Let n ∈ N and let V = {v1, v2, ..., vn}; we proceed by induction. If n ∈ {1, 2},
obviously. We suppose that the property is true for all k ≤ n − 1 and we
prove it for n. There is a Hamiltonian path connecting n− 1 vertices:

There are 2 possibilities:
i. ∃vn −→ vi1 or ∃vin−1 −→ vn. In any case we get a Hamiltonian path:
vn −→ vi1 −→ vi2 −→ −→ vin−1 or vi1 −→ vi2 −→ ... −→ vin−1 −→ vin ,
as in the picture:

3.1. DIRECTED GRAPHS 55

ii. ∃vi1 −→ vn and ∃vn −→ vin−1 .
Again, there are 2 possibilities:
i’. ∃vn −→ vi2 or ∃vin−2 −→ vn. In any case we get a Hamiltonian path as
follows:

ii’. ∃vi2 −→ vn and vn −→ vin−2 ; again, we have 2 possibilities....
Finally, we get that there are 2 vertices vik−1

and vik such that:

vik−1
−→ vn and vn −→ vik .

The Hamiltonian path is:

vi1 −→ vi2 −→ ... −→ vik−1
−→ vn −→ vik −→ vik+1

−→ ... −→ vin−1 ,

as in the picture:

56 CHAPTER 3. GRAPHS

11. Definition
Let G = (V, A, i, t) be a finite digraph, V = {v1, v2, ..., vn} and let
bij = card{a ∈ A ; vi −→ vj}. The adjacent matrix associated to the
digraph G is MG = (bij)1≤i,j≤n.

12. Example
Let G1 and G2 be as in the picture:

The associated adjacent matrices are:

MG1 =

0 2 1
1 1 1
0 1 2

 MG2 =

1 1 2
2 2 0
1 2 0

.

By using the adjacent matrix we can get an isomorphism test for digraphs
with simple links.

13. Theorem (test isomorphism)
Let G1 and G2 be two finite graphs with simple links and let
MG1 = (xij)1≤i,j≤n and MG2 = (yij)1≤i,j≤m be their adjacent matrices. The
following assertions are equivalent:
a. G1 and G2 are isomorphic.
b. m = n and there is a permutation σ on {1, 2, ..., n} such that
xij = yσ(i)σ(j), ∀ 1 ≤ i, j ≤ n.
Proof a⇒ b Let G1 and G2 be isomorphic and let G1 = (V1, A1, i1, t1),
G2 = (V2, A2, i2, t2), V1 = {v1, v2, ..., vn}, V2 = {w1, w2, ..., wn}. Let h =
(hV , hA) be the isomorphism, i.e. hV : V1 7→ V2, hA : A1 7→ A2 bijections as
in Definition 6. Let i ∈ {1, 2, ..., n} be fixed and let wk = hV (vi); the map

3.1. DIRECTED GRAPHS 57

σ : {1, 2, ..., n} 7→ {1, 2, ..., n}, , σ(i) = k is a permutation and, moreover,
hV (vi) = wσ(i). The graphs are isomorphic, hence:

xij = 1 ⇔ vi −→ vj in G1 ⇔ hV (vi) −→ hV (vj) in G2 ⇔

⇔ wσ(i) −→ wσ(j) ⇔ yσ(i)σ(j) = 1.

Of course, the same proof holds if xij = 0.
b⇒ a Let m = n and let σ be a permutation of {1, 2, ..., n} such that xij =
yσ(i)σ(j),∀ i, j ∈ {1, 2, ..., n}. Let hV : V1 7→ V2, hV (vi) = wσ(i); let vi, vj ∈ V1.
Then:

vi −→ vj ⇔ xij = 1 ⇔ yσ(i)σ(j) = 1 ⇔ wσ(i) −→ wσ(j).

The same proof holds if vi and vj are not connected (i.e. xij = 0), hence the
graphs are isomorphic.

14. An algorithm to test the isomorphism of digraphs
Another way to check if two graphs are isomorphic is by using the semide-
grees of the vertices. The idea of the algorithm: if G1 and G2 are two fi-
nite digraphs with simple links (denoted as in the previous theorem), we
define a graph Γ (usually denoted (G1 −→ G2)) as follows: the set of
vertices is V1 ∪ V2 and if v ∈ V1 and w ∈ V2, then v −→ w in Γ ⇔
v and w have the same semidegrees . If in this way we get a bijection be-
tween the sets V1, V2, then the graphs are isomorphic.
We describe the previous idea on the following example:
The graphs (G1 −→ G2) and (G1 −→ G3) are :

It results that G1 and G2 are isomorphic, but not G1 and G3.

58 CHAPTER 3. GRAPHS

We now formalize the previous ideas.
Let G1 and G2 as above. The digraph Γ = (G1 −→ G2) is defined as follows:
let U1 ⊆ V1 be the maximal subset such that ∀u ∈ U1, 6 ∃ v ∈ V1, v 6= u
such that deg−(u) = deg−(v), deg+(u) = deg+(v); let U2 ⊆ V2 be the similar
subset in G2. An arc in Γ is obtained by connecting a vertex of U1 to a vertex
in U2 if and only if they have the same semidegrees. If this map between U1

and U2 is not a bijection, then the digraphs are not isomorphic. If it is a
bijection, then we try to extend it to all V1: for every v ∈ V1 \U1, we consider
all the vertices u ∈ U1 such that v −→ u or u −→ v; we do the same in G2.
We extend the previous map by connecting v ∈ V1 \U1 to w ∈ V2 \U2 if and
only if they have the same semidegrees. If in this way we get a bijective map
between V1 and V2, then the digraphs are isomorphic.
The Algorithm
1) Check if card(V1) = card(V2); if yes, go to step 2; if not, go to step 7.
2) Compute the semidegrees of the vertices in G1 and G2 and find the sets
U1 and U2. If U1 = V1 and U2 = V2, then go to step 4; if not, then go to step
3.
3) For every vertex in V1 \ U1 find the adjacent vertices in U1; do the same
in G2. Define the digraph Γ. Go to step 5.
4) Define the digraph Γ. Go to step 5.
5) Check if the condition of isomorphism is fulfilled; if yes, go to step 6; if
not, go to step 7.
6) G1 and G2 are isomorphic.
7) G1 and G2 are not isomorphic.

15. Theorem
Let G = (V,A, i, t) be a finite digraph with simple links, V = {v1, v2, ..., vn}
and let MG = (bij)ij be its adjacent matrix. Let M r

G =
(
b
(r)
ij

)
ij

be the r-th

power of MG.
i. b

(r)
ij is the number of paths of length r connecting vi to vj.

ii. The graph G has no circuits if and only if the matrix MG is nilpotent.
iii. Let X = MG + M2

G + ... + M r
G. If X = (xij)ij, then xij is the number of

paths of length less or equal than r connecting vi to vj.
Proof i. Induction on r. If r = 1, the conclusion is obvious. We suppose
that the conclusion is true for 1 ≤ m ≤ r; we now prove it for r + 1. By

definition M r+1
G = M r

G ·MG, i.e. b
(r+1)
ij =

n∑
m=1

b
(r)
ik bkj. It results that b

(r+1)
ij is

3.1. DIRECTED GRAPHS 59

exactly the sum of those b
(r)
ik such that bkj = 1, i.e. vk −→ vj. According

to the hypothesis, it results that b
(r+1)
ij is the number of paths of length r

connecting vi to vj.
ii. If G has no circuits (closed paths) it results that there are no paths of
length greater or equal to n + 1; by applying i, we get M r+1

G = O.
Conversely, if there is m ∈ N such that Mm

G = O, then there are no paths of
length greater than m; if the graph would have circuits, then there would be
paths of any length, contradiction.
iii. Obviously, by applying i.

16. Exercises
Let n ∈ N . Find the number of paths of length less or equal than n connect-
ing v1 to v2 in the following digraphs:

17. Algorithm: the minimal path
Let G = (V,A, i, t) be a finite digraph. If u and w are two fixed vertices in
V , then the problem is to find a path of minimum length connecting u to

60 CHAPTER 3. GRAPHS

w; such a path is called minimal path. Obviously, it is not unique. In the
following we give an algorithm to solve this problem.
1) Mark by 0 the vertex u.
2) Mark by 1 all the vertices v ∈ V \ {u} such that u −→ v.
3) Let Vp be the set of all vertices marked by p ; mark by p+1 all the vertices
x such that

x 6∈ Vk, ∀ k ≤ p and ∃ y ∈ Vp such that y −→ x

.4) Marking is over when the vertex w is marked; let w ∈ Vm.
5) A minimal path u −→ vim−1 −→ vim−2 −→ ... −→ vi1 −→ w is obtained if
we choose (in this order) vi1 ∈ Vm−1, vi2 ∈ Vm−2, ..., vim−1 ∈ V1.

18. Exercises
In the following digraphs, find a minimal path between the vertices u and w.

3.2 Nondirected Graphs

19. Definitions
Let V and E be nonempty sets and let V (2) be the set of all nonoriented pairs

3.2. NONDIRECTED GRAPHS 61

of V , i.e. V (2) = {(v, w) ; v, w ∈ V with the convention (v, w) = (w, v)}. A
nondirected graph is a triple H = (V,E, ϕ)), where ϕ : E 7→ V (2) is an
arbitrary map.
The elements of V are called vertices (nodes) and the elements of E are called
edges (arcs). The difference with the directed graphs is that an arc (edge)
has no more an initial and a terminal vertex; they are both the ends of the
arc (edge). We still have a geometrical representation:

ϕ(a) = (u,w) ⇔ u
a−−−− w.

Two vertices u, w are connected by an edge if ∃ a ∈ E such that ϕ(a) = (u, w).
A chain (or path) d of length r is a finite sequence of r edges, a1, a2, ..., ar

and r + 1 vertices v1, v2, ..., vr+1 such that:

v1

a1−−−− v2

a2−−−−
ar−−−− vr+1

If this is the case, the chain d connects the vertices v1 and vr+1. A closed
chain is called a cycle.
The graph is finite if V and E are finite sets. The graph is with simple links
if for every two vertices v, w ∈ V there is at most one edge a ∈ E such that

v
a−−−− w.

20. Examples

21. Definition
Let H = (V,E, ϕ) be a nondirected graph with simple links. For every vertex
v ∈ V, let:

Cv = {v} ∪ {w ∈ V ; there is a chain connecting v and w}.

62 CHAPTER 3. GRAPHS

The set Cv is called the connected component associated to v.
The graph is said to be connected if every two different vertices can be
connected by a chain. On the set of vertices we define the relation:

u ∼ w ⇔ there is a chain connecting u and w

22. Proposition
The above relation is an equivalence on V . For each vertex v ∈ V , the as-
sociated class of equivalence is the connected component of v. The graph is
connected if there is exactly one connected component (or, equivalently, the

factor set V̂ has one element).
Proof Obviously.

23. Notation
Let H = (V,E, ϕ) be a finite nondirected graph. We denote by n(H) =
card(V) the number of vertices, m(H) = card(E) the number of edges and
with p(H) the number of the connected components.
The cyclomatic number of H is, by definition,

µ(H) = m(H)− n(H) + p(H).

24. Theorem
Let H = (V, E, ϕ) be a finite nondirected graph with simple links such that
n(H) ≥ 2. Then:
a) µ(H) ≥ 0.
b) If H1, H2, ..., Hp(H) are the connected components of H, then

µ(H) = µ(H1) + µ(H2) + ... + µ(Hp(H))

c) H has no cycles if and only if µ(H) = 0.
Proof Let H(1) be the graph obtained by eliminating one edge in H. Then:

n(H(1)) = n(H), m(H(1)) = m(H)− 1 and

p(H(1)) = p(H) or p(H(1)) = p(H) + 1.

It results:
µ(H(1)) = m(H(1))− n(H(1)) + p(H(1)) =

3.2. NONDIRECTED GRAPHS 63

= m(H)− 1− n(H) + p(H(1)) ≤ µ(H).

We continue to eliminate all the edges of H one by one. We finally get
the graphs H(1), H(2), H(3), ..., K, where K has no more edges. Obviously,
µ(H) ≥ µ(H(1)) ≥ µ(H(2)) ≥ ... ≥ µ(K) = 0− n(H) + p(H) = 0.
b) The cyclomatic number of an arbitrary connected component is
µ(Hi) = m(Hi)− n(Hi) + 1, hence

p(H)∑
i=1

µ(Hi) =

p(H)∑
i=1

m(Hi)−
p(H)∑
i=1

n(Hi) + p(H) =

= m(H)− n(H) + p(H) = µ(H).

c) The property is obvious for every connected component, i.e. Hi has no
cycles if and only if µ(Hi) = 0, simply because m(Hi) = n(Hi) − 1. Obvi-
ously, the graph H has no cycles if and only if each Hi has no cycles. The
proof is completed by applying b.

64 CHAPTER 3. GRAPHS

Chapter 4

Finite Automata

4.1 Alphabets and Languages

1. Definitions

An alphabet is a finite set. Its elements are usually called symbols (or
letters). For example, the binary alphabet, {0, 1} contains two symbols and
the Roman alphabet, {a, b, c, ..., z} has 27 letters. By definition, the empty
set is the alphabet without any symbol.
A string (or word) over a fixed alphabet is a finite sequence of symbols of
that alphabet. For example aa, , t, dgez, mathematics are strings over the
Roman alphabet, while 00, 101, 0, 0101 are strings over the binary alphabet.
The empty string is, by definition the string without any symbol. It is
usually denoted by e. Generally, we shall denote strings by Greek letters:
α, β, ... etc.
If A is an arbitrary alphabet, we denote by A? the set of all strings over A.
Of course, A? contains the empty string and the symbols of A. The length of
a string is the number of its symbols. For example, the string aabzw over the
Roman alphabet has the length 5. We shall denote |α| the length of the string
α. Generally, a string (but not the empty string), α ∈ A? can be also defined
as function α : {1, 2,, |α|} 7→ A, α(j) = the symbol in the j-th position.
For example, if α = start, then α(1) = s, α(2) = t, α(3) = a, α(4) = r, α(5) =
t. It follows that if the alphabet A has n symbols, then there are nk strings
of length k ∈ N (the number of functions from {1, 2, ..., k} to A).

65

66 CHAPTER 4. FINITE AUTOMATA

2. Proposition
For every alphabet A, the set of all strings, A? is countable.

Proof To define a bijective map from N to A? we first fix some ordering of
the alphabet A = {x1, x2, ..., xn}. The strings of A? can be enumerated as
follows:
1. For each k ∈ N , all strings of length k are enumerated before all the
strings of length k + 1.
2. The nk strings of length k are enumerated lexicographically, i.e. the string
xi1xi2 ...xik precedes the string xj1xj2 ...xjk

if ∃m ∈ {0, 1, ..., k − 1} such that
ip = jp,∀ p = 1, 2, ..., m and im+1 < jm+1.
For example, if A = {a}, then A? = {e, a, aa, aaa, ...} and if A = {a, b}, then
A? = {e, a, b, aa, ab, ba, bb, aaa, aab, aba, baa, abb, bab, bba, bbb, ...}.

3. Definitions
Let A be an alphabet and let α, β ∈ A?. The concatenation of α and

β is the string αβ defined as follows: |αβ| = |α| + |β|, αβ(j) = α(j) if
1 ≤ j ≤ |α| and αβ(|α| + j) = β(j) if 1 ≤ j ≤ |β|. In fact the string αβ is
the string α followed by β. For example, if α = ab, β = ba, γ = sent, then
αβ = abba, βα = baab, αγ = absent.
The concatenation is associative: (α)βγ = α(βγ) and the empty string is the
unit element: αe = eα = α.
A string α is a substring of the string β if there are strings γ and δ such
that β = γαδ. The empty string is a substring in every string.
The power of a string is defined by induction: α0 = e, αi+1 = αiα, ∀i ∈ N .
The reversal of a string α , denoted by αR is the string ”spelled backwards”.
For example, if α = abc, then αR = cba.

4. Exercise
Prove that for all strings α1, α2, ..., αm, the following equality holds:

(α1α2...αm)R = αR
mαR

m−1...α
R
1 .

5. Definitions
Let A be an alphabet. A language over A is any subset L of A?.

Let L1 and L2 be two languages over the same alphabet, A. The concate-
nation of L1 and L2 is denoted by L1L2 and, by definition, it is

L1L2 = {α ; α = β1β2, β1 ∈ L1 and β2 ∈ L2}.

4.1. ALPHABETS AND LANGUAGES 67

For example, if L1 = {α ; α has an odd number of 0’s} and
L1 = {β ; β starts with a 0 followed by an arbitrary number of 1’s, then
L1L2 = {γ ; γ has an even number of 0’s}.
The union of two languages L1 and L2 is their set union: L1 ∪ L2.
Another way to obtain new languages is the closure (or Kleene star) of a
single language. If L is a language over A, then its closure is, by definition:

L = {α ∈ A? ; ∃ k ∈ N and α1, α2, ..., αk ∈ L such that α = α1α2...αk}.
By definition, the closure of the empty alphabet contains just the empty
string: ∅? = {e}.
It results that the empty string and the strings of L are members of L?.
For example, if L = {001, 10, 1000}, then 100011000001 ∈ L? because it is
the concatenation of 10, 001, 1000, 001.
The following properties are obvious:
A? is the closure of A.
If L1 ⊆ L2, then L?

1 ⊆ L?
2.

If A ⊆ L, then L? = A?.
LL? = {α ; ∃k ∈ N \ {0} and α1, α2, ..., αk ∈ L1 such that α = α1α2...αk}.
Obviously, the empty string is not necessary in LL?, unless e ∈ L.

6. Examples
a. {a}? = {ak ; k ∈ N}.
b. If L1 = {a} , L2 = {b}, then L1L2 = {ab}, (L1L2)

? = {(ab)k ; k ∈ N}.
L1 ∪ L2 = {a, b} and L1 (L1 ∪ L2) = {aa, ab}.
L?

1L2 = {anb ; n ∈ N}, L?
1 (L1 ∪ L2) = {an+2, an+1b ; n ∈ N}.

L1 (L1 ∪ L2)
? = {aα ; α ∈ {a, b}?}; in fact L1 (L1 ∪ L2)

? consists of all
strings over the alphabet {a, b} starting with an a.

7. Definitions
We start with an example. Let

L = {α ∈ {0, 1}? ; α has at most two of 1s, which are not consecutive}.
The description of this language in terms of the previous operations is L =
{0}?{1}{0}? (∅? ∪ {0}{1}{0}?). Of course, we can write without braces {, },
i. e. L = 0?10? (∅? ∪ 010?).
The idea is that, sometimes, we can give finite representations of an infinite
number of strings. Such a representation involves an alphabet and a finite

68 CHAPTER 4. FINITE AUTOMATA

number of operations with languages.
An important issue is what strings (over an alphabet) can be represented by
using a finite number of times the concatenation, the union and the closure.
This leads to the following definition.
Let A be an alphabet. The regular expressions over A are obtained by
following the rules:
i. ∅ and the symbols of A are regular expressions.
ii. If µ and ν are regular expressions, then (µν) is a regular expression.
iii. If µ and ν are regular expressions, then (µ ∪ ν) is a regular expression.
iv. If µ is a regular expression, then µ? is a regular expression.
v. Nothing is a regular expression unless it follows from (i) to (iv).
Formally, a regular expression is a string over the alphabet A∪{(,), ∅,∪,? }.
In fact, every regular expression represents a language (according to what
the symbols ∪, ·,? mean).
The exact relation between a regular expression and the associated language
is given by a map from strings to languages, i.e

L : A? 7→ {L ; L language},
such that:
i. L(∅) = ∅ and L(a) = {a}, ∀a ∈ A.
ii. L((µν)) = L(µ)L(ν), ∀µ, ν regular expressions.
iii. L((µ ∪ ν)) = L(µ) ∪ L(ν), ∀µ, ν regular expressions.
iv. L(µ?) = L(µ)?, ∀µ regular expression.
A language L is said to be a regular language if it can be represented
by a regular expression, i.e., formally, there is a regular expression µ such
that L(µ) = L. In fact, the class of regular languages is the minimal set of
languages containing ∅, {a},∀a ∈ A and is closed under the union, concate-
nation and closure.
A language recognition device is a device (algorithm) which can recognize
(in a finite number of steps) if a string belongs (or not) to a given language.

8. Example
Let A = {a, b} and let us compute L(((a ∪ b)?a)). It is not difficult to

”guess” that the answer is ”all strings over A which end with a”. The formal
proof according to the previous definition is:

L(((a ∪ b)?a)) = L((a ∪ b)?)L(a) = L((a ∪ b)?){a} =

= L((a ∪ b))?{a} = (L(a) ∪ L(b))?{a} = ({a} ∪ {b})?{a} = {a, b}?{a}.

4.2. DETERMINISTIC AND NONDETERMINISTIC FINITE AUTOMATA69

4.2 Deterministic and nondeterministic Finite

Automata

A finite automaton is a language recognition device. The input is a string
over an alphabet and the output (answer) is an indication if the input be-
longs (or not) to the language. The answer must come after a finite number
of steps (operations).

9. Definitions
A deterministic finite automaton (d.f.a.) is a quintupleM = (K,A, δ, s, F),
where:
K is a nonempty finite set; its elements are called states.
A is an alphabet.
s ∈ K is called the initial state.
F ⊆ K; its elements are called final states.
δ : K ×A 7→ K is called the transition map.
The input string is delivered to the automaton on an input tape; at any
specified moment the automaton is in one state and by reading one symbol it
passes to another state according to the transition function. The input tape
moves to the right and the process is repeated until the last symbol of the
input string is read. The automaton stops in a state, which is the answer of
the device. We can ”represent” this process as follows:

A configuration of a deterministic finite automaton is any element of
(q, α) ∈ K×A?. In the above representation the configuration is (q2, abbabbbba).
A configuration of type (q, e) means that the automaton has consumed all
its input and it stops.
On the set of configurations we define the relation ”pass (yields) in one
step” as follows:

(q, α) 7→ (p, β) ⇔ ∃ a ∈ A such that α = aβ and δ(q, a) = p.

70 CHAPTER 4. FINITE AUTOMATA

The relation is not reflexive or transitive. We now define the relation ”pass
(yields) in several (possibly zero) steps”:

(q, α)
?7→ (p, β) ⇔ ∃α1, α2, ..., αk ∈ A? and q1, q2, ..., qk ∈ K such that

(q, α) 7→ (q1, α1) 7→ (q2, α2) 7→ 7→ (qk, αk) 7→ (p, β).

Obviously, the relation
?7→ is reflexive and transitive.

A string α ∈ A? is called accepted if, by definition, there is a final state
q ∈ F such that (s, α)

?7→ (q, e).
The accepted language by the automaton M is denoted by L(M) and is
defined as: L(M) = {α ∈ A? ; α is accepted by M}.

10. Example
Let M = (K,A, δ, s, F), such that:

K = {q0, q1}, A = {a, b}, s = q0, F = {q0}
and the function δ is:
δ(q0, a) = q0, δ(q0, b) = q1,
δ(q1, a) = q1, δ(q1, b) = q0.
Let us compute the evolution from the state q0 by reading the string aabba:

(q0, aabba) 7→ (q0, abba) 7→ (q0, bba) 7→ (q1, ba) 7→ (q0, a) 7→ (q0, e).

Since q0 is a final state it results that the string aabba is accepted by M.
Let us now compute:

(q0, abbba) 7→ (q0, bbba) 7→ (q1, bba) 7→ (q0, ba) 7→ (q1, a) 7→ (q1, e).

It results that abbba is not an accepted string by M.
It is not difficult to prove that the accepted language is
L(M) = {α ∈ A? ; α has an even number of b’s}.

11. Definition
Let M = (K,A, δ, s, F) be a deterministic finite automaton. We can

associate to M a digraph G as follows. The vertices are the states, the arcs
are the symbols and q

a7→ p in G ⇔ δ(q, a) = p. The initial state is marked
by > and the final states by a circle.

4.2. DETERMINISTIC AND NONDETERMINISTIC FINITE AUTOMATA71

12. Examples
i. The digraph associated to the automaton from example 2 is:

ii. Find the automaton defined by the digraph:

iii. The digraph defined by the automaton M:
K = {q0, q1, q2, q3}, A = {a, b}, s = q0, F = {q0, q1, q2}, and
δ(q0, a) = q0, δ(q0, b) = q1,
δ(q1, a) = q0, δ(q1, b) = q2,
δ(q2, a) = q0, δ(q2, b) = q3,
δ(q3, a) = q3, δ(q3, b) = q3

is

72 CHAPTER 4. FINITE AUTOMATA

13. Examples
Find the languages accepted by the automata defined by the following

digraphs:
a.

The strings a, aba, ababa, ... are accepted; the language is a(ba)?.
b.

The strings ab, a2b, a3b, ... are accepted; any string anbα, n ≥ 1, α 6= e
is not accepted. The string b is accepted, but any string bα, α 6= e is not
accepted. The language is (a)?b.

14. Definition
The ”deterministic” behavior of a deterministic finite automaton refers to
the fact that the next state is determined by the current state and by the
input symbol. This property allows to predict the future evolution of the
device if the present state and the input string are known.
In a nondeterministic finite automaton, the states are changing in a way

4.2. DETERMINISTIC AND NONDETERMINISTIC FINITE AUTOMATA73

which is only partially determined by the current state and the input sym-
bol. From the present state, by reading one input symbol, the device can
pass, arbitrarily, in several possible states. Moreover, the automaton can
read, at one moment, strings, not only symbols. Generally, it is not a sim-
ple problem to find a deterministic finite automaton with a given accepted
language. The same problem for nondeterministic automata is much simpler
due to the greater flexibility of these devices.

Formally, the definition is the following:
A nondeterministic finite automaton (n.d.f.a) is a quintuple
N = (K,A, ∆, s, F), where:
K is a not empty finite set of states;
A is an alphabet;
s ∈ K is the initial state;
F ⊆ K is the set of final states;
∆ is the transition relation, i.e. ∆ ⊆ K ×A? ×K.
A configuration of N is any element of (p, α) ∈ K × A?. The relation
pass (yields) in one step is defined on the set of configurations as follows:
(q, α) 7→ (p, β) ⇔ ∃ γ ∈ A? such that α = γβ and (q, γ, p) ∈ ∆.
The relation pass (yields) in several steps is:

(q, α)
?7→ (p, β) ⇔ ∃α1, α2, ..., αk ∈ A? and q1, q2, ..., qk ∈ K such that

(q, α) 7→ (q1, α1) 7→ (q2, α2) 7→ 7→ (qk, αk) 7→ (p, β).

A string α ∈ A? is accepted by N if there is a state q ∈ F such that
(s, α)

?7→ (q, e). The set of all accepted strings is the language accepted
by N .

15. Definition
Let us consider the nondeterministic finite automaton defined as follows:

K = {q0, q1, q2, q3, q4}, A = {a, b}, s = q0, F = {q4} and the transition rela-
tion:

∆ = {(q0, a, q0), (q0, b, q0), (q0, ba, q1), (q1, b, q2),

(q1, a, q3), (q2, e, q4), (q3, b, q4), (q4, a, q4), (q4, b, q4)}.
The associated digraph is:

74 CHAPTER 4. FINITE AUTOMATA

We illustrate the nondeterministic behavior of the device by computing
two possible evolutions starting from the configuration (q0, baababaab):

(q0, baababaab) 7→ (q0, aababaab) 7→ (q0, ababaab) 7→ (q0, babaab) 7→
7→ (q0, abaab) 7→ (q0, baab) 7→ (q0, aab) 7→ (q0, ab) 7→ (q0, b,) 7→ (q0, e).

In this case the automaton stops in a non final state.

(q0, baababaab) 7→ (q1, ababaab) 7→ (q3, babaab) 7→ (q4, abaab) 7→
7→ (q4, baab) 7→ (q4, aab) 7→ (q4, ab) 7→ (q4, b) 7→ (q4, e).

This time the automaton stops in a final state. It results that the string
baababaab is accepted.
The different evolutions were obtained by the two different behaviors of the
automaton at the state q0: it can read the symbol a or the string ba.

16. Exercice
In the previous nondeterministic automaton compute all possible evolu-

tions starting from the configuration (q0, abbabb).

17. Observation
We have to notice that a deterministic finite automaton is a particular

case of a nondeterministic one: the transition relation ∆ ⊆ K ×A? ×K is a
function δ : K×A 7→ K. Consequently, a nondeterministic finite automaton
is a deterministic one if the following conditions are fulfilled:
i. for every (q, α, p) ∈ ∆ it results that α ∈ A;
ii. for every q ∈ K and a ∈ A, there is only one p ∈ K such that (q, a, p) ∈ ∆.

4.3. THE EQUIVALENCE BETWEEN D.F.A AND N.D.F.A. 75

18. Exercises

i. Design the graph associated to the automaton:
K = {q0, q1, q2}, A = {a, b}, s = q0, F = {q2} and

∆ = {(q0, e, q1), (q0, a, q0), (q0, b, q2), (q1, a, q2),

(q1, ab, q0), (q2, b, q2), (q2, a, q0), (q2, aba, q1)}.

Compute two different evolutions starting from the configuration (q0, ababa).
Is ababa an accepted string ?
The same questions for the configuration (q0, baba).
ii. Design the associated digraph of the automaton:
K = {q0, q1},A = {a, b}, s = q0, F = {q1} and
∆ = {(q0, a, q1), (q0, ab, q1), (q0, b, q0), (q1, e, q0), (q1, bb, q1), (q1, a, q0)}.
Compute three different transitions starting from the configuration (q0, aabbbba);
is this an accepted string ?

4.3 The equivalence between deterministic and

nondeterministic finite automata

19. Definition

Two finite automata M1 and M2 are said to be equivalent if they have
the same accepted language. We denote this fact by M1 ∼M2. Obviously,
” ∼ ” is a relation of equivalence on the set of finite automata.
For example, the automata defined by the following three digraphs they all
accept the language (ab)?:

76 CHAPTER 4. FINITE AUTOMATA

The first two are nondeterministic, while the third is deterministic.

20. Example

The following four automata accept the same language, (ab ∪ aba)?.

21. Theorem

Let N be a nondeterministic finite automaton; then there is a determin-
istic finite automaton M such that M∼ N .
We don’t prove the theorem; instead, we present the algorithm which asso-
ciates to every nondeterministic automaton N a deterministic one, M, which
is equivalent to N .

22. Algorithm

Let N = {K,A, ∆, s, F) be a nondeterministic finite automaton.
First step We first eliminate the ”multiple transitions”, i.e. transitions

4.3. THE EQUIVALENCE BETWEEN D.F.A AND N.D.F.A. 77

(q, α, p) ∈ ∆ with α of length strictly greater than 1.
For every transition (q, α, p) ∈ ∆ with α = a1a2...ak we introduce new (non
final) states p1, p2, ..., pk−1 and we replace the multiple transition

q
α7→ p by q

a17→ p1
a27→ p2

a37→
ak−17→ pk−1

ak7→ p.

Let N ′ = (K ′,A, ∆′, s, F) be the nondeterministic finite automaton obtained
by adding to K the new states and to ∆ the new transitions (and by elimi-
nating the multiple transitions). It is a simple observation that N ′ ∼ N .

For example, the automaton N

is replaced by N ′:

Second step For each state q ∈ K ′ we compute the set:

E(q) = {q} ∪ {p ∈ K ′ ; (q, e)
?7→ (p, e)}.

For example, for the automaton N ′ considered in the first step we get:

E(q0) = {q0}, E(q1) = {q0, q1}, E(q2) = {q2},

E(p1) = {p1}, E(p2) = {p2}, E(p3) = {p3}.
Third step We now construct a deterministic finite automatonM equivalent
to N ′, hence to N . The basic idea is to consider the states in M as subsets
of K ′. If, for example, the automaton N ′ is in a state q ∈ K ′ and by reading
a certain symbol it could pass in one of the states p1 or p2, then in the

78 CHAPTER 4. FINITE AUTOMATA

automaton M the subset {p1, p2} will be a state. In this way, we eliminate
the nondeterministic behavior of N .

Formally, the definition of M is:
M = (K ′′,A, δ, s′′, F ′′), where:
K ′′ ⊆ P(K ′);
s′′ = E(s);
F ′′ = {Q ⊆ K ′ ; Q ∩ F 6= ∅}.
The transition map δ is:

δ(Q, a) =
⋃

q∈K′
{E(q) ; ∃ p ∈ Q such that (p, a, q) ∈ ∆′}.

If ∆′ does not contain elements of the type (p, a, q) with p ∈ Q and an arbi-
trary q, then, by definition, δ(Q, a) = ∅ ∈ P(K ′); if this is the case, then ∅ is a
state inM. The transitions starting from the empty set end to the empty set.

For example, for the automaton N ′ considered in the second step, we get:
s′′ = E(q0) = Q0.
We now compute the transitions starting from Q0:
δ(Q0, a) = ∅,
δ(Q0, b) = E(q1) ∪ E(p1) = {q0, q1, p1} = Q1.
We have got two new states: ∅ and Q1. We now compute the transitions
starting from them.
δ(∅, a) = ∅,
δ(∅, b) = ∅.
δ(Q1, a) = E(p2) = {p2} = Q2,
δ(Q1, b) = E(q1) ∪ E(p1) ∪ E(p3) = {q0, q1, p1, p3} = Q3.
We have got two new states: Q2 and Q3; the transitions are:
δ(Q2, a) = ∅,
δ(Q2, b) = E(q0) = Q0.
δ(Q3, a) = E(p2) ∪ E(q2) = {p2, q2} = Q4,
δ(Q3, b) = E(q1) ∪ E(p1) ∪ E(p3) = {q0, q1, p1, p3} = Q3.
We have got the new state Q4.
δ(Q4, a) = E(q2) = {q2} = Q5.
δ(Q4, b) = E(q0) ∪ E(q2) = {q0, q2} = Q6.
We have got the new states Q5 and Q6; the transitions are:
δ(Q5, a) = E(q2) = {q2} = Q5.
δ(Q5, b) = E(q2) = Q5.

4.3. THE EQUIVALENCE BETWEEN D.F.A AND N.D.F.A. 79

δ(Q6, a) = Q5,
δ(Q6, b) = E(q1) ∪ E(p1) ∪ E(q2) = {q0, q1, p1, q2} = Q7.
We have a new state, Q7; the transitions are:
δ(Q7, a) = E(p2, q2) = {p2, q2} = Q4.
δ(Q7, b) = E(q1) ∪ E(p1) ∪ E(p3) ∪ E(q2) = {q0, q1, p1, p3, q2} = Q8.
We have the new state Q8; the transitions are:
δ(Q8, a) = E(p2) ∪ E(q2) = {p2, q2} = Q4.
δ(Q8, b) = E(q1) ∪ E(p1) ∪ E(p3) ∪ E(q2) = {q0, q1, p1, p3, q2} = Q8.
It results that the deterministic finite automaton M equivalent to N is
M = (K ′′,A, δ, s′′, F ′′), where:
K ′′ = {Q0, ∅, Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8},
A = {a, b}, s′′ = Q0,
F ′′ = {Q4, Q5, Q6, Q7, Q8}
and the transition map δ defined above.
The digraph of M is:

23. Example
Let N be the nondeterministic finite automaton defined by the digraph:

It is easy to observe that L(N) = ((a)?ab(a)?)?.
The problem is to find a deterministic finite automaton equivalent to N . We

80 CHAPTER 4. FINITE AUTOMATA

apply the previous algorithm.
First step; we introduce a new state q2 and two new transitions and we get
the automaton N ′:

Second step; we now compute:
E(q0) = {q0}, E(q1) = {q0, q1}, E(q2) = {q2}.
Third step; we define the automaton M∼ N ′ ∼ N .
s′′ = E(q0) = {q0} = Q0.
δ(Q0, a) = E(q0) ∪ E(q2) = {q0, q2} = Q1; δ(Q0, b) = ∅.
δ(Q1, a) = E(q0) ∪ E(q2 = Q1 ; δ(Q1, b) = E(q1) = {q0, q1} = Q2.
δ(Q2, a) = E(q0) ∪ E(q2) ∪ E(q1) = {q0, q1, q2} = Q3 ; δ(Q2, b) = ∅.
δ(Q3, a) = E(q0)∪E(q2)∪E(q1) = {q0, q1, q2} = Q3 ; δ(Q3, b) = E(q1) = Q2.
The deterministic finite automaton M has five states: Q0, Q1, Q2, Q3, ∅, the
initial state s′′ = Q0 and the final states are F ′′ = {Q2, Q3}. The digraph of
M is:

4.3. THE EQUIVALENCE BETWEEN D.F.A AND N.D.F.A. 81

24. Example
Let N be defined by the digraph:

Find a deterministic finite automaton M equivalent to N .
Solution The automaton N does not contain multiple transitions, hence we
pass directly to the second step.
E(q0) = {q0, q1, q2, q3}, E(q1) = {q1, q2, q3},
E(q2) = {q2}, E(q3) = {q3} and E(q4) = {q3, q4}.
Third step; we compute the new states and the transition map: s′′ = E(q0) =
{q0, q1, q2, q3} = Q0.
δ(Q0, a) = E(q0) ∪ E(q4) = {q0, q1, q2, q3, q4} = Q1.
δ(Q0, b) = E(q2) ∪ E(q4) = {q2, q3, q4} = Q2.
δ(Q1, a) = Q1, ; δ(Q1, b) = Q2.
δ(Q2, a) = E(q4) = {q3, q4} = Q3.
δ(Q2, b) = E(q4) = Q3.
δ(Q3, a) = Q3, δ(Q3, b) = ∅.
The digraph of M is:

82 CHAPTER 4. FINITE AUTOMATA

25. Example
Design a deterministic finite automaton which accepts the language (a)?ba.

Solution We first design a nondeterministic finite automaton N with the
language (a)?ba; then, by applying the algorithm we get a deterministic finite
automaton M∼ N .
A nondeterministic finite automaton N such that L(N) = (a)?ba is given by
the digraph:

We now apply the algorithm; we introduce a new state q2 and we get the
automaton N ′:

Second step:
E(q0) = {q0}, E(q1) = {q1}, E(q2) = {q2}.
Third step:
s′′ = E(q0) = {q0} = Q0.
δ(Q0, a) = E(q0) = Q0 ; E(Q0, b) = E(q2) = {q2} = Q1.
δ(Q1, a) = E(q1) = {q1} = Q2 ; δ(Q1, b) = ∅.
δ(Q2, a) = ∅ ; δ(Q2, b) = ∅.
The initial state of M is Q0 and the final states are Q0, Q2. The digraph of
M is:

26. Example
Design deterministic finite automata M1 and M2 such that

L(M1) = (a)?ba(b)? and L(M2) = a(aba)?b
Solution
Start with the nondeterministic finite automata defined by the digraphs:

4.3. THE EQUIVALENCE BETWEEN D.F.A AND N.D.F.A. 83

27. Exercises

Find the deterministic finite automata equivalent to those defined by the
following digraphs:

84 CHAPTER 4. FINITE AUTOMATA

28. Exercises
Design deterministic finite automata which accept the following languages:

(ab)?a, (a)?ba(b)?, (ab)?a ∪ (ab)?b, (a)?b ∪ (a)?a.

4.4 Turing Machines

In this section we present few elementary facts about Turing machines (for
more information on this subject, see [1], [3], [5]). In some sense, these are
generalized versions of finite automata. Turing machines are basic abstract
symbol-manipulating devices which, despite their simplicity, can be adapted
to simulate the logic of any computer algorithm. They are not intended as a
practical computing technology, but a thought (ideal) experiment about the
limits of mechanical computation. Studying their abstract properties yields
many insights into computer science and complexity theory.

4.4. TURING MACHINES 85

29. Definition
Before the formal definition, we first give a ”description” of a Turing ma-
chine. Let A be an alphabet (containing a special blank symbol) and K
be a finite set of states; the Turing machine consists of an infinitely long
tape divided into boxes (cells), each marked with a symbol (including the
blank symbol) of the alphabet A. It also has a head which can read and
write symbols in the boxes of the tape; it can move the tape left and right
one and only one cell at a time. The behavior of a Turing machine is defined
by a transition function (or action table); depending on the symbol of
A in the current cell (read by the head), on the present state and according
to the transition function, the machine performs the following actions:
i) it either leaves the current symbol unchanged, or it replaces it with a new
one;
ii) the machine then moves to one of the two neighbouring cells (left or right);
iii) the machine either remains in the same state, or changes to another state;
the machine has a state register that stores the state; there is one special
start state with which the state register is initialized.

The formal definition of a Turing machine is the following.
A Turing machine is a 7-th tuple (K,A, b, Σ, δ, q0, F), where:
K is the (finite) set of states;
A is an alphabet;
b ∈ A is the blank symbol (the only symbol allowed to occur on the tape
infinitely often at any step during the computation);
Σ ⊆ A \ {b} is the set of input symbols;
δ : K × A 7→ K × A × {L,R} is a relation (partial function) called the
transition map; L and R denote the left and right shift, respectively. An
alternative definition allows another symbol, N which means ”no shift”;
q0 is the initial state;
F is the set of final (accepted) states.
The machine may not halt or it may halt by sending it in a non existent
state.

86 CHAPTER 4. FINITE AUTOMATA

30. Example
Let A = {0, 1} and let K = {A,B,C, D}. The action table is

Table 0 1
A 1 R A 1 R E
B 0 R D 0 R A
C 1 R D 1 R B
D 0 L B 1 L C

The state E is the nonexistent state.
The action table is interpreted as follows; if the machine is in state A and
it is positioned at the cell with entry 0, then the machine will perform the
following actions:
1) it replaces the symbol 0 by the symbol 1
2) it moves (one position) to the right (R)
3) it changes to the state A.
Usually, the fact that the machine is in state A and it is positioned at the
cell with entry 0 is represented as:

A

↓
...0...

Of course, at the left and at the right of the symbol 0 are other symbols, too.
The action table may be given by several 5-tuples with the configuration:

(current state, scanned symbol,print symbol,move tape,next state)

For example the above action table may be written as:

{(A, 0, 1, R,A), (A, 1, 1, R,E), (B, 0, 0, R, D), (B, 1, 0, R, A),

(C, 0, 1, R, D), (C, 1, 1, R,B), (D, 0, 0L,B), (D, 1, 1, L, C)}
Below we give an example of the actions performed by the above Turing

machine.

4.4. TURING MACHINES 87

D

↓
...... 0 1 1 0 1 1...

C

↓
...... 0 1 1 0 1 1...

B

↓
...... 0 1 1 0 1 1...

A

↓
...... 0 1 0 0 1 1...

A

↓
...... 0 1 0 1 1 1...

E

↓
...... 0 1 0 1 1 1...

The Turing machine halts in this last situation (E is the non existent
state).
For the same Turing machine, if we start from another situation, the machine
may not halt; for example:

88 CHAPTER 4. FINITE AUTOMATA

B

↓
...... 0 0 1 0 1 1...

D

↓
...... 0 0 1 0 1 1...

B

↓
...... 0 0 1 0 1 1...

Now the Turing machine will repeat the same actions and will never halt.

31. Notations
We consider the following notations and conventions:
1) The states of a Turing machine with k states will be denoted by the

natural numbers 0, 1, 2, 3, ..., k − 1 and the non existent state (halting state)
will be denoted by k.

2) The alphabet will be A = {0, 1}. The natural numbers will be rep-
resented in the 1-ary system, i.e. a string of n 1’s represents the natural
number n. The numbers are interspaced by single 0’s. The natural number 0
is the empty string (or by a tape consisting entirely of 0’s). As an example,
the sequence of natural numbers:

...7, 12, 1, 0, 9, 2, 5, ...

is represented on the tape of a Turing machine as:

...01111111011111111111101001111111110110111110...

The two successive 0’s delimitate the number 0 (the empty string).
3) If the tape doesn’t consist entirely of 0’s, then the Turing machine

starts at the left most 1.

4.4. TURING MACHINES 89

4) The starting state is 0.

Design of Turing Machines

32. Example
Let f : N 7→ N, f(n) = 1. The problem is to design a Turing machine

to compute f . This means that if we have the situation:

current state

↓
0 11...1︸ ︷︷ ︸

n

0

then the Turing machine must turn it to the situation:

halting state

↓
010

The action table is:

Table 0 1
0 1L1 0R0
1 0R2

The blank in the above table denotes a combination never reached. Indeed,
the Turing machine defined by the above action table acts as follows:

it changes 1’s to 0’s as it moves to the right;
it stops at the symbol 0 and it replaces it by the symbol 1;
it moves to the halting state (denoted by 2).

33. Example
Let us design a Turing machine to compute the successor function, i.e.

f : N 7→ N, f(n) = n + 1.

90 CHAPTER 4. FINITE AUTOMATA

So the Turing machine must turn the situation:

current state

↓
0 11...1︸ ︷︷ ︸

n

0

to the situation:

halting state

↓
0 11...1︸ ︷︷ ︸

n+1

0

Let us consider the following action table:

Table 0 1
0 1L1 1R0
1 0R2 1L1

This Turing machine moves to the right and it doesn’t change 1; it stops
at the symbol 0 and changes it to the symbol 1;then it moves to the left till
the first 1; finally it moves to the halting state.

34. Example
Let us design a Turing machine to add two natural numbers, i.e. to

compute the function

f : N×N 7→ N, f(n,m) = n + m.

The corresponding Turing machine must turn the situation:

4.4. TURING MACHINES 91

current state

↓
0 1...1︸︷︷︸

n

0 1...1︸︷︷︸
m

0

to the situation

halting state

↓
0 1...1︸︷︷︸

n

1...1︸︷︷︸
m

0

One possible action table is:

Table 0 1
0 1L1 1R0
1 0R2 1L1
2 0R3

This action table acts as follows: it move to the right, doesn’t change
1, it stops when it is reading 0, replaces it by 1, then it moves to the left
and replace the left-most 1 by 0, moves one position to the right and finally
moves to the halting state. One can design another action table with the
same result (by changing the order of some actions):

Table 0 1
0 0R1
1 1L2 1R1
2 0R3 1L2

This time the Turing machine changes the first (from the left) 1 to 0, then
it moves to the right and doesn’t change the symbol 1, it changes the first
encountered 0 to 1, it moves to the left at the left-most 1 and the moves to
the halting state.

92 CHAPTER 4. FINITE AUTOMATA

35. The composition of Turing Machines
Let M1 and M2 be two Turing machines over the same alphabet with k1

and k2 states, respectively. The states of M1 are {0, 1, 2, ..., k1 − 1}, with 0
starting state and k1 the halting state.
The states of M2 are {k1, k1 + 1, ..., k1 + k2 − 1}, with k1 the starting state
and k1 + k2 the halting state. Then the composition of M1 and M2 (in this
order) is defined by the action table obtained by putting the action table
of M2 below the action table of M1. Sometimes it is possible that the two
Turing machines have the same starting state, namely, 0.

36. Example
Let us design a Turing machine to compute the function

f : N 7→ N×N, f(n) = (n, n)

This means to change the situation

current state

↓
0 1 ... 1︸ ︷︷ ︸

n

0

to the situation

halting state

↓
0 1 ... 1︸ ︷︷ ︸

n

0 1 ... 1︸ ︷︷ ︸
n

0

We shall use the idea of composing two Turing machines. We shall split
the process in two steps: the first one is to turn the situation

current state

↓
0 1 ... 1︸ ︷︷ ︸

n

0

to the situation

4.4. TURING MACHINES 93

current state

↓
0 1 ... 1︸ ︷︷ ︸

n

0 1 ... 1︸ ︷︷ ︸
n

0

and the second step is to turn the above situation to

halting state

↓
0 1 ... 1︸ ︷︷ ︸

n

0 1 ... 1︸ ︷︷ ︸
n

0

For the first step, we proceed by induction, by turning the situation:

current state

↓
0 1 ... 1︸ ︷︷ ︸

r

1 ... 1︸ ︷︷ ︸
n−r

0 1 ... 1︸ ︷︷ ︸
r

0

to the situation:

current state

↓
0 1 ... 1︸ ︷︷ ︸

r+1

1 ... 1︸ ︷︷ ︸
n−r−1

0 1 ... 1︸ ︷︷ ︸
r+1

0

The action table for the first Turing machine is:

Table 0 1
0 0R1
1 0R2 1R1
2 1L3 1R2
3 0L4 1L3
4 1R0 1L4

The above action table adds a 1 on the right-hand block and moves the
head one position to the right. For the second step, one can use the following

94 CHAPTER 4. FINITE AUTOMATA

action table (the second Turing machine has the same starting state as the
first one):

Table 0 1
0 0L5
5 0R6 1L5

Consequently, to solve the problem, the action table is:

Table 0 1
0 0L5 0R1
1 0R2 1R1
2 1L3 1R2
3 0L4 1L3
4 1R0 1L4
5 0R6 1L5

37. Example

Let us design a Turing machine to compute the function

f : N 7→ N, f(n) = 2n.

Of course, we shall compose the Turing machines from examples 36 and 34 (in
this order). Consequently, we obtain the following two solutions (according
to the two action tables found in example 34):

Table 0 1
0 0L5 0R1
1 0R2 1R1
2 1L3 1R2
3 0L4 1L3
4 1R0 1L4
5 0R6 1L5
6 1L7 1R6
7 0R8 1L7
8 0R9

or

4.4. TURING MACHINES 95

Table 0 1
0 0L5 0R1
1 0R2 1R1
2 1L3 1R2
3 0L4 1L3
4 1R0 1L4
5 0R6 1L5
6 0R7
7 1L8 1R7
8 0R9 1L8

The busy beaver problem
Let n ∈ N and let T be a binary Turing machine (i.e. over the binary

alphabet) with n states. The action table contains at most 2n rules (a table
with 2n rows and 2 columns). An instruction of this Turing machine is aS k,
with a ∈ {0, 1}, S ∈ {L,R} and k ∈ {0, 1, 2, ..., n−1, n}, n being the halting
state. Obviously, there are 4(n + 1) instructions of this type. Consequently,
there are at most (4(n + 1))2n binary Turing machines with n states. So we
proved the following:

38. Observation
The set of all binary Turing machines with n states is a finite set.

We denote by Tn this set. Among these Turing machines there are ma-
chines which halt if they start from a blank tape and there are machines
that do not halt if they start from the blank tape. We leave to the reader to
argue the previous assertion. We denote by Hn ⊂ Tn the set of those Turing
machines which halt if they start from a blank tape.

39. Definition
For a Turing machine M ∈ Hn we denote by B(M) the number of steps

necessary to halt if it starts from the blank tape and we define the function:

β : N 7→ N, β(n) = max
M∈Hn

B(M)

The map β is called the busy beaver function. It is well defined because
Hn is a finite set.

96 CHAPTER 4. FINITE AUTOMATA

A Turing machine M ∈ Hn such that B(M) = β(M) is called a ”busy
beaver” (it is not necessarily unique).

The busy beaver problem is to find out whether there is an algorithm
(finite procedure , computing programme) to compute the value β(n) for
every n ∈ N. In more sophisticated terms the problem is to determine if
β is a computable function (we do not enter into details on computable
functions).

40. Theorem
There is no algorithm (finite procedure, computing programme) to com-

pute β(n) for every n ∈ N.
Before sketching the proof we want to mention that the above assertion
doesn’t mean that one cannot compute β(n) (in a finite procedure) for a
particular n ∈ N; it means that there is no algorithm to compute β(n) for
every n ∈ N.

Proof
We just give the basic ideas of the proof; there are three steps.

The first step: the function β is strictly increasing, i.e.

β(n + 1) > β(n), ∀n ∈ N

Let M ∈ Hn such that β(n) = B(M). We define a new Turing machine
M ′ ∈ Hn+1 by adding to the action table of M new instructions, for example:

n 1 L (n+1) 1 L (n+1)

Here, as usual, n is the halting state of M (and it is a state of M ′) and n+1
is the halting state of M ′. It can be checked that B(M ′) = β(n) + 1, so

β(n) + 1 = B(M ′) ≤ β(n + 1),

and the first step is proved.
The second step: it can be proved that any algorithm (computer pro-

gramme) can be described in terms of a Turing machine, so the busy beaver

4.4. TURING MACHINES 97

problem reduces to prove that there is no Turing machine to compute β(n)
for every n ∈ N.

The third step is to prove that the assumption that there exists a Turing
machine to compute β(n), for every n ∈ N leads to a contradiction. For this
we define a set of Turing machines as follows:

1) There exists a Turing machine with 2 states, M1 to compute the func-
tion f : N 7→ N, f(n) = n + 1 (as in example 33).

2) There exists a Turing machine with 9 states, M2 to compute the func-
tion f : N 7→ N, f(n) = 2n (as in example 37).

3) Suppose on the contrary that a Turing machine M exists to compute
the function β(n), ∀n ∈ N; let us suppose that M has k states.

4) We now define the Turing machine Tm = M1M
m
2 M ; the notation Mm

2

means ”a sequence of m copies of M2”. The Turing machine Tm starts with
M1, followed by m copies of M2 and it ends with M . It is easy to check
that T (m), when started with a blank tape will halt with β(2m) of successive
1’s on the tape, so it will take at least β(2m) steps to halt. Moreover, the
number of states of T (m) is 2 + 9m + k. It results:

β(2m) ≤ B(T (m)) ≤ β(2 + 9m + k)

Obviously, for all sufficiently large m ∈ N, we have the inequality

2m > 1 + 9m + k,

so, by applying the first step we get

β(2m) > β(2 + 9m + k),

which is in contradiction with the above inequality. It results that there ex-
ists no Turing machine to compute the busy beaver function, so, according
to the second step, the proof is completed.

41. The halting problem
The result obtained for the busy beaver function can be used to solve the

following halting problem:

Is there an algorithm (finite procedure, computing programme) which
can determine for any Turing machine and for any input tape, if the Turing
machine will halt?

98 CHAPTER 4. FINITE AUTOMATA

The answer is negative; as in the previous proof (second step) it is enough
to prove that there exists no Turing machine to complete this task. Let us
suppose, on the contrary, that such a Turing machine exists and let it be
denoted by M . For every n ∈ N, by using M , one can find out those Tur-
ing machines in Tn which halt when started with the blank tape; this is the
subset Hn. This is a finite set, so we can now compute B(H), ∀H ∈ Hn;
consequently, we compute β(n), ∀n ∈ N, which is a contradiction with the
conclusion of the busy beaver problem.

Chapter 5

Boolean Algebras

5.1 Boolean Calculus

1. Definition

A Boolean algebra is a system ℵ = {B, ∨, ·, ′, 0, 1}, where:

B is a non-empty set;

∨ : B × B 7→ B
and

· : B × B 7→ B
are operations on B called disjunction and,
respectively, conjunction;

′ : B 7→ B
is a map called negation;

0 and 1 are two elements in B with 0 6= 1
such that for every x, y, z ∈ B, we have:

99

100 CHAPTER 5. BOOLEAN ALGEBRAS

x ∨ y = y ∨ x, (1.1)
xy = yx, (1.1′)

(x ∨ y) ∨ z = x ∨ (y ∨ z), (1.2)
(xy)z = x(yz), (1.2′)
x ∨ xy = x, (1.3)

x(x ∨ y) = x, (1.3′)
x ∨ yz = (x ∨ y)(x ∨ z), (1.4)

x(y ∨ z) = xy ∨ xz, (1.4′)
x ∨ 1 = 1, (1.5)
x0 = 0, (1.5′)

x ∨ x′ = 1, (1.6)
xx′ = 0, (1.6′).

Hence, the disjunction and the conjunction are commutative, (1.1 and
1.1′), associative, (1.2 and 1.2′) and verify the absorption laws, (1.3 and
1.3′); a system {B,∨, ·, } with properties 1.1 to 1.3′ is called a lattice.

To be a Boolean algebra, this lattice must be distributive, (1.4 and
1.4′), to have a unit element, (1.5) and a zero element, (1.5′), and to be
complemented, (1.6 and 1.6′). The element x′ is called the complement
of x.

2. Examples
(i) Let B2 = {0, 1} and let ∨, · and ′ be defined as follows:

0 ∨ 0 = 0, 0 ∨ 1 = 1, 1 ∨ 1 = 1

0 · 0 = 0, 0 · 1 = 0, 1 · 1 = 1

0′ = 1, 1′ = 0

The properties 1.1 to 1.6′ can be easily verified. B2 is called the two-
element algebra.
(ii) The set of all propositions is a Boolean algebra with the usual logical
connectors.
(iii) Let X be a non-empty set and let P(X) = {A ; A ⊆ X} be the set of
all subsets of X. We consider the usual operations of sets:

A ∪B = {x ∈ X ; x ∈ A or x ∈ B}.
A ∩B = {x ∈ X ; x ∈ A and x ∈ B}.

5.1. BOOLEAN CALCULUS 101

A′ = {x ∈ X ; x 6∈ A}.
Then {P(X), ∪, ∩, ′, ∅, X} is a Boolean algebra.
(iv) More generally, if H ⊆ P(X) such that:

∅ ∈ H,

A,B ∈ H ⇒ A ∪B ∈ H,

A,B ∈ H ⇒ A ∩B ∈ H,

A ∈ H ⇒ A′ ∈ H,

then {H,∪, ∩, ′, ∅, X} is a Boolean algebra.
(v) Let ℵ = {B,∨, ·, ′, 0, 1} be a Boolean algebra; then the system {B, ·, ∨, ′, 1, 0}
is also a Boolean algebra, called the dual of ℵ and denoted by ℵd. The as-
sertion results because in the definition of a Boolean algebra the axioms are
grouped into pairs, by interchanging ∨ with · and 0 with 1.
(vi) We now give an example of a lattice which is not a Boolean algebra.
Let M be a non-empty set and let

F(M) = {f ; f : M 7→ [0, 1]}.

An element f ∈ F(M) is called a fuzzy set. For every f, g ∈ F(M),we
define:

f ∨ g : M 7→ [0, 1], (f ∨ g)(t) = maximum{f(t), g(t)},

f · g : M 7→ [0, 1], (f · g)(t) = minimum{f(t), g(t)}.
It results that {F(M), ∨, ·} is a distributive lattice.
In order to define a structure of a Boolean algebra on F(M), a natural choice
is to consider:

0 : M 7→ [0, 1], 0(t) = 0,

1 : M 7→ [0, 1], 1(t) = 1,

f ′ = 1− f.

However, the system {F(M), ∨, ·, ′, 0, 1} is not a Boolean algebra because
if f is a constant function (fuzzy set), f 6= 0 and f 6= 1, then there is no
g ∈ F(M) such that f ∨ g = 1 and f · g = 0.

102 CHAPTER 5. BOOLEAN ALGEBRAS

3. Theorem (the principle of duality)
Let ℵ = {B, ∨, ·, ′, 0, 1} be a Boolean algebra and let P be a property

expressed using ∨, ·, ′, 0 and 1. Let P d be the property (usually called the
dual property of P) obtained by interchanging (in P) ∨ with · and 0 with 1.
Then we have:

P is true ⇔ P d is true.

Proof
If P is a true property in an arbitrary Boolean algebra ℵ, then P must

be true in the dual algebra, ℵd, (see example 2(v)). But the property P in
ℵd is exactly the property P d in ℵ.

4. Theorem
Let {B, ∨, ·, ′, 0, 1} be a Boolean algebra; then, for every x, y ∈ B, we

have:
x ∨ x = x (1.7)
x · x = x (1.7′)
x ∨ 0 = x (1.8)
x · 1 = x (1.8′)

x ∨ y = 0 ⇔ x = y = 0 (1.9)
x · y = 1 ⇔ x = y = 1 (1.9′)

We call (1.7) and (1.7′) the laws of idempotency.
Proof

We shall prove only (1.7), (1.8) and (1.9); the rest will follow by using
the principle of duality.
From (1.3) and (1.3′), we get:

x = x ∨ x(x ∨ y) = x ∨ x.

From (1.5′) and (1.3), we get:

x ∨ 0 = x ∨ x0 = x.

We now prove (1.8); from the idempotency, we get 0 ∨ 0 = 0. Conversely, if
x ∨ y = 0, by using (1.3′) and (1.5′), we get:

x = x(x ∨ y) = x0 = 0.

Of course, a similar argument gives y = 0.

5.1. BOOLEAN CALCULUS 103

5. Lemma
Let x, y ∈ B.

If x ∨ y = 1 and xy = 0, then y = x′.

We say that the complementation in a Boolean algebra is unique.
Proof

We have:

y = y1 = y(x ∨ x′) = yx ∨ yx′ = x′y ∨ 0 = x′y ∨ x′x =

= x′(y ∨ x) = x′1 = x′.

6. Theorem
For every x, y ∈ B, we have:

(x ∨ y)′ = x′y′, (1.10)
(xy)′ = x′ ∨ y′, (1.10′)
(x′)′ = x, (1.11)

x ∨ x′y = x ∨ y, (1.12)
x (x′ ∨ y) = xy, (1.12′).

We call (1.10) and (1.10′) De Morgan laws, (1.11) the law of double
negation and (1.12) and (1.12′) the laws of Boolean absorption.
Proof

We shall prove only the properties (1.10), (1.11) and (1.12); the others
follow by using the principle of duality.
From (1.6) and (1.6′), we have:

x′ ∨ (x′)′ = 1 and x′ (x′)′ = 0,

hence, (x′)′ = x by the above lemma. By using the same lemma, to prove
De Morgan laws, we need to prove

(x ∨ y) ∨ x′y′ = 1 and (x ∨ y)x′y′ = 0.

We have:
(x ∨ y) ∨ x′y′ = ((x ∨ y) ∨ x′)) ((x ∨ y) ∨ y′) =

= (y ∨ (x ∨ x′)) (x ∨ (y ∨ y′)) = (y ∨ 1)(x ∨ 1) = 1 ∨ 1 = 1,

and:
(x ∨ y)x′y′ = xx′y′ ∨ yx′y′ = xx′y′ ∨ x′yy′ =

104 CHAPTER 5. BOOLEAN ALGEBRAS

= 0y′ ∨ x′0 = 0 ∨ 0 = 0.

For the Boolean absorption, we have:

x ∨ y = 1(x ∨ y) = (x ∨ x′)(x ∨ y) = (x ∨ xy) ∨ x′y = x ∨ x′y.

7. Definition
Let x, y ∈ B. Then, by definition:

x ≤ y ⇔ x ∨ y = y.

We read ≤ ”less or equal”. The converse relation is ”greater or equal”:

x ≥ y ⇔ y ≤ x.

8. Observation
For every x, y ∈ B, we have:

x ≤ y ⇔ xy = x.

Proof If x ≤ y, then x ∨ y = y, hence:

xy = x(x ∨ y) = x.

Conversely, if xy = y, then:

x ∨ y = xy ∨ y = y,

hence x ≤ y.

We can extend the principle of duality to relations ≤ and ≥:

9. Theorem (the extended principle of duality)
Let ℵ = {B, ∨, ·, ′, 0, 1} be a Boolean algebra and let P be a property

expressed using ∨, ·, ′, 0, 1, ≤ and ≥. Let P d be the dual property of P ,
obtained by interchanging ∨ with ·, 0 with 1 and ≤ with ≥. We have:

P is true ⇔ P d is true.

5.1. BOOLEAN CALCULUS 105

Proof
From theorem 3 and from the above observation, we get:

x ≤ y in the algebra ℵ ⇔ y ≤ x in the algebra ℵd.

10. Theorem
Let {B, ∨, ·, ′, 0, 1} be a Boolean algebra; then for every x, y, z ∈ B, we

have:

x ≤ x, (1.13)
if x ≤ y and y ≤ x, then x = y, (1.14)
if x ≤ y and y ≤ z, then x ≤ z, (1.15).

We say that the relation ≤ is reflexive, antisymmetric and transitive,
respectively, hence ≤ is a relation of order (generally, ≤ is not a relation of
total order).
Proof

From x ∨ x = x, we get x ≤ x.
If x ≤ y and y ≤ x, then:

x = x ∨ y = y.

From x ≤ y and y ≤ z, we get:

x ∨ y = y and y ∨ z = z,

hence:
x ∨ z = x ∨ (y ∨ z) = (x ∨ y) ∨ z = y ∨ z = z,

which proves that x ≤ z.

Other properties of ≤ are given in the following theorem:

11. Theorem
For every x, y, z ∈ B, we have:

x ≤ x ∨ y, (1.16)
xy ≤ x, (1.16′)
x ≤ z and y ≤ z ⇔ x ∨ y ≤ z, (1.17)
t ≤ x and t ≤ y ⇔ t ≤ xy; (1.17′)

106 CHAPTER 5. BOOLEAN ALGEBRAS

further:

if x ≤ y then x ∨ z ≤ y ∨ z, (1.18)
if x ≤ y then xz ≤ yz, (1.18′

0 ≤ x, (1.19)
x ≤ 1, (1.19′)
x ≤ y ⇔ x′ ∨ y = 1, (1.20)
x ≤ y ⇔ xy′ = 0; (1.20′)

moreover,

x = y ⇔ (x′ ∨ y)(x ∨ y′) = 1, (1.21)
x = y ⇔ xy′ ∨ x′y = 0, (1.21′)
x ≤ y ⇔ y′ ≤ x′, (1.22)

It results that x ∨ y is the least upper bound of x and y and that xy is
the greatest lower bound of x and y. The elements 0 and 1 are the least
and the greatest, respectively, elements of B.
Proof

Properties (1.16), (1.17), (1.8) and (1.19) are obvious. We prove (1.20);
if x ≤ y, then x ∨ y = y, hence:

x′ ∨ y = x′ ∨ (x ∨ y) = (x′ ∨ x) ∨ y = 1 ∨ y = y.

Conversely, if x′ ∨ y = 1, then:

x ∨ y = (x ∨ y) · 1 = (x ∨ y)(x′ ∨ y) = xx′ ∨ y = 0 ∨ y = y,

hence x ≤ y. To prove (1.21), we use (1.20) and the antisymmetry:

x = y ⇔ x ≤ y and y ≤ x ⇔
⇔ x′ ∨ y = 1 and x ∨ y′ = 1 ⇔ (x′ ∨ y)(x ∨ y′) = 1.

Finally, (1.22) results directly from (1.20). The rest of the properties follow
using the extended principle of duality.

12. Exercise
Prove that for every a, b, c ∈ B, we have:

(i) ab ≤ c ⇔ a ≤ b′ ∨ c.
(ii) ab ≤ c ∨ d ⇔ ac′ ≤ b′ ∨ d.

5.1. BOOLEAN CALCULUS 107

Solution
(i) If ab ≤ c, then (∨ab′):

ab ∨ ab′ ≤ c ∨ ab′ ≤ c ∨ b′.

The left member is a, hence we get a ≤ b′ ∨ c.
Conversely, if a ≤ b′ ∨ c, then (·b):

ab ≤ b(b′ ∨ c) = bc ≤ c.

(ii) If ab ≤ c ∨ d, then, (∨ab′):

ab ∨ ab′ ≤ ab′ ∨ (c ∨ d),

hence:
a ≤ ab′ ∨ c ∨ d.

It results (·c′):

ac′ ≤ ab′c′ ∨ c′(c ∨ d) = ab′c′ ∨ cd ≤ b′ ∨ cd ≤ b′..

Conversely, if ac′ ≤ b′ ∨ d, then we get (∨ac):

a ≤ b′ ∨ d ∨ ac,

hence (·b):
ab ≤ bd ∨ abc = b(d ∨ ac) ≤ b(d ∨ c) ≤ c ∨ d.

13. Exercise
Let a, b ∈ B; prove that the following assertions are equivalent:

(i) a ≤ b.
(ii) ∀c ∈ B, ac ≤ bc and a ∨ c ≤ b ∨ c.
(iii) ∃c ∈ B, ac ≤ bc and a ∨ c ≤ b ∨ c.
(iv) ∃c ∈ B, ac ≤ b and a ≤ b ∨ c.
Solution

The implications (i)⇒(ii) ⇒(iii) ⇒ (iv) are obvious. We prove (iv)⇒ (i).
Let us suppose that there is c ∈ B such that:

ac ≤ b and a ≤ b ∨ c.

108 CHAPTER 5. BOOLEAN ALGEBRAS

Using the exercise 12(i), we get:

ac ≤ b ⇔ a ≤ c′ ∨ b.

But a ≤ c′ ∨ b and a ≤ b ∨ c implies :

a ≤ (c′ ∨ b)(b ∨ c) = c′b ∨ b ∨ bc = b.

14. Exercise

Let a, b ∈ B; the following assertions are equivalent:
(i) a = b.
(ii) a ∨ b ≤ ab.
(iii) a ∨ b = ab.
(iv) ∀c ∈ B, ac = bc and a ∨ c = b ∨ c.
(v) ∃c ∈ B, ac = bc and a ∨ c = b ∨ c.

15. Definition

Let {B,∨, ·, ′, 0, 1} be a Boolean algebra and let Bo ⊆ B such that:
(i) 0, 1 ∈ Bo.
(ii) If x, y ∈ Bo, then x ∨ y, xy and x′ are in Bo.
We say that Bo is a subalgebra in B.
It results that {Bo, ∨, ·, ′, 0, 1} is itself a Boolean algebra.

16. Observation

It can be proved (exercise) that Bo is a subalgebra in B if and only if the
following conditions are satisfied:
(i) Bo 6= ∅.
(ii) If x, y ∈ Bo, then x ∨ y and x′ are in Bo.

17. Example

(i) The two-element Boolean algebra, B2 (see example 2(i)), is a subal-
gebra in every Boolean algebra.
(ii) Let B be a Boolean algebra different from the two element algebra and
let a ∈ B such that a 6= 0 and a 6= 1. Let Ba = {0, a, a′, 1}. Then Ba is a
subalgebra; it is called the subalgebra generated by a.
More generally, let F ⊂ B; we can define the subalgebra generated by

5.1. BOOLEAN CALCULUS 109

F , denoted BF , as follows:

BF =
⋂
{H ; H subalgebra , H ⊇ F}.

It results that BF is the least subalgebra containing F ; of course, it must be
shown first that an intersection of subalgebras is a subalgebra.

18. Definition
Let {B, ∨, ·, ′, 0, 1} and {G, ∪, ∩, ?, ¯, †} be two Boolean algebras. A

map
h : B 7→ G,

is called a homomorphism (of Boolean algebras) if for every x, y ∈ B, the
following conditions are satisfied:

h(0) = ¯
h(1) = †

h(x ∨ y) = h(x) ∪ h(y)
h(xy) = h(x) ∩ h(y)
h (x′) = (h(x))?

If h is a bijective homomorphism, then it it called an isomorphism and the
Boolean algebras B and G are called, in this case, isomorphic.

19. Observation
It can be proved (exercise) the following properties:
(i) The conditions:

h(x ∨ y) = h(x) ∪ h(y) and h (x′) = (h(x))?

are sufficient for h to be a homomorphism.
(ii) If h is an isomorphism, then its inverse, h−1, is an isomorphism, too.

20. Exercise
Prove that the range of a homomorphism

h : B 7→ G

is a subalgebra in G.

110 CHAPTER 5. BOOLEAN ALGEBRAS

21. Definition
Let {B, ∨, ·, ′, 0, 1} be a Boolean algebra and let a, b ∈ B be two elements

such that a ≤ b. The set:

[a, b] = {x ∈ B ; a ≤ x ≤ b}

is called the interval (or the segment) [a, b].
Obviously, B = [0, 1].

22. Exercise
With the above notations, let a, b ∈ B such that a ≤ b. For every x ∈

[a, b], let
x] = a ∨ bx′.

Prove that {[a, b], ∨, ·,], a, b} is Boolean algebra.
Is it a subalgebra in B?

We conclude this section with a representation theorem for Boolean alge-
bras.

23. Theorem (M.Stone)
(i) If B is an arbitrarily finite Boolean algebra, then there is a finite set

X such that B is isomorphic with the usual Boolean algebra
{P(X), ∪, ∩, ′, ∅, X}; (see example 2(iii)).
(ii) If B is an arbitary Boolean algebra, then there is a set Y and an injective
homomorphism

h : B 7→ P(Y).

This means that the Boolean algebra B is isomorphic with a subalgebra of
P(Y); of course, this subalgebra is the range of h.

24. Corollary
(i) If B is a finite Boolean algebra, then there is a natural number n such

that the number of elements of B is 2n.
(ii) Moreover, all the Boolean algebras with the same number (finite) of el-
ements are isomorphic.

5.2. BOOLEAN FUNCTIONS 111

5.2 Boolean functions

In the following, {B, ∨, ·, ′, 0, 1} is, as usual, a Boolean algebra.

25. Definition
By a Boolean function of n variables we mean any function

f : Bn 7→ B,

which can be obtained by the following rules:
(i) For every a ∈ B, the constant function, fa, defined by:

fa : Bn 7→ B, fa(x1, .., xn) = a,

is a Boolean function.
(ii) For every i ∈ {1, 2, .., n}, the projection function, pi, defined by:

pi : Bn 7→ B, pi(x1, .., xn) = xi,

is a Boolean function.
(iii) For every Boolean functions of n variables, f and g, the following func-
tions are Boolean functions, too:

f ∨ g : Bn 7→ B, (f ∨ g)(x1, ..xn) = f(x1, .., xn) ∨ g(x1, .., xn)

f · g : Bn 7→ B, (fg)(x1, .., xn) = f(x1, .., xn)g(x1, .., xn)

f ′ : Bn 7→ B, f ′(x1, .., xn) = (f(x1, .., xn))′ .

Of course, the functions f ∨ g, f · g and f ′ are called the disjunction of f
and g, the conjunction of f and g and the negation of f , respectively.
(iv) Any Boolean function of n variables is obtained by applying the rules
(i),(ii) and (iii) a finite number of times.

A Boolean function is called a simple Boolean function if it is obtained
by the rules (ii), (iii) and:
(v) Any simple Boolean function of n variables is obtained by applying the
rules (ii) and (iii) a finite number of times.
This means that a constant function is simple Boolean function if and only
if it is 0 or 1.

112 CHAPTER 5. BOOLEAN ALGEBRAS

We mention that there are a functions which are not Boolean functions.

26. Notations
In the following, we shall denote by X,Y, .. arbitrary vectors in Bn:

X = (x1, .., xn) and Y = (y1, .., yn).

If the components of a vector belong to {0, 1}, then it is called an elemen-
tary vector. We denote elementary vectors by the letters A,B, .. and their
components by α1, α2, ..:

A = (α1, .., αn), where αi ∈ {0, 1},
or, equivalently,

A ∈ {0, 1}n.

Of course, there are 2n elementary vectors. For an elementary vector A =
(α1, .., αn), we denote by A′ the vector:

A′ = (α′1, .., α
′
n).

If α ∈ {0, 1} and x ∈ B, the notation xα means:

xα =

{
x′ if α = 0
x if α = 1

If X = (x1, .., xn) and A = (α1, .., αn), the notation XA means the con-
junction of all the elements xα1

1 , .., xαn
n :

XA = xα1
1 · · · xαn

n .

The notation
(∨

XA
)

means the disjunction of all the elements xα1
1 , .., xαn

n :

(∨
XA

)
= xα1

1 ∨ ... ∨ xαn
n .

If {aA}A∈{0,1}n is a set of 2n elements in B, then, the expressions

∨
A

aAXA and
∧
A

(
aA ∨

(∨
XA

))
,

mean that the disjunction and the conjunction, (denoted here by
∧

) respec-
tively, is over all the 2n elementary vectors A ∈ {0, 1}n.

5.2. BOOLEAN FUNCTIONS 113

27. Examples
(i) If n = 1, then X = x ∈ B and the elementary vectors are A = 1 and

A = 0. We have: ∨
A

aAXA = ax ∨ bx′,

∨
A

aAXA = (c ∨ x)(b ∨ x′),

where, a, b, c, d ∈ B.
(ii) If n = 2, we have X = (x, y) and the elementary vectors are:

A = (0, 0), B = (0, 1), C = (1, 0), D = (1, 1).

We have:
XA = x′y′, XB = x′y, XC = xy′, XD = xy.

and: ∨
A

aAXA = ax′y′ ∨ bx′y ∨ cx′y ∨ dxy,

∧
A

(
aA ∨

(∨
XA

))
= (s ∨ x′ ∨ y′)(t ∨ x′ ∨ y ∨ u ∨ x ∨ y′)(v ∨ x ∨ y),

where, a, b, c, d, s, t, u, v ∈ B.

The following theorem is a fundamental result in the study of Boolean
functions (without proof).

28. Theorem (canonical forms)
(i) A function f : Bn 7→ B is a Boolean function if and only if it can be

written in the canonical disjunctive form:

f(X) =
∨
A

aAXA,

the coefficients aA being
aA = f(A).

(ii) A function f : Bn 7→ B is a Boolean function if and only if it can be
written in the canonical conjunctive form:

f(X) =
∧
A

(
bA ∨

(∨
XA

))
,

114 CHAPTER 5. BOOLEAN ALGEBRAS

the coefficients bA being
bA = f(A′).

Of course, assertion (ii) is the dual of (i).

29. Corollary
(i) A Boolean function is determined by its values on the elementary

vectors.
(ii) The values of a Boolean function f satisfy the inequalities:

∧
A

f(A) ≤ f(X) ≤
∨
A

f(A), ∀X ∈ Bn.

(iii) A Boolean function f is a simple Boolean function if and only if for
every elementary vector A, we have:

f(A) ∈ {0, 1}.

30. Examples
(i) Let f(x) = ax ∨ bx′ ∨ c. We compute:

f(0) = b ∨ c, f(1) = a ∨ c,

hence the canonical disjunctive form is:

f(x) = (b ∨ c)x′ ∨ (a ∨ c)x,

and the canonical conjunctive form is:

f(x) = (b ∨ c ∨ x)(a ∨ c ∨ x′).

(ii) Let f(x) = (a ∨ x)(b′x ∨ x′). We compute:

f(0) = a, and f(1) = b′,

hence the canonical disjunctive form is:

f(x) = ax′ ∨ b′x,

and the canonical conjunctive form is:

f(x) = (a ∨ x)(b′ ∨ x′).

5.2. BOOLEAN FUNCTIONS 115

(iii) Let f : B2 7→ B,

f(x, y) = ab′(x ∨ y′)(a′xy ∨ b(x′ ∨ y)′) ∨ a ∨ (x ∨ b).

We compute:

f(0, 0) = a ∨ b, f(0, 1) = a ∨ b, f(1, 0) = 1, f(1, 1) = a,

hence the canonical forms are:

f(x, y) = (a ∨ b)x′y′ ∨ (a ∨ b)x′y ∨ xy′ ∨ axy,

and:

f(x, y) = ((a ∨ b) ∨ x ∨ y)((a ∨ b) ∨ x ∨ y′)(1 ∨ x ∨ y′)(a ∨ x′ ∨ y′) =

= ((a ∨ b) ∨ x ∨ y)((a ∨ b) ∨ x ∨ y′)(a ∨ x′ ∨ y′).

(iv) Let f : B3 7→ B,

f(x, y, z) = (x ∨ y)(a ∨ x′ ∨ (xz)′).

We compute:

f(0, 0, 0) = 0, f(0, 0, 1) = 0, f(0, 1, 0) = 1, f(1, 0, 0) = 1,

f(0, 1, 1) = 1, f(1, 0, 1) = a, f(1, 1, 0) = 1, f(1, 1, 1) = a.

The canonical forms are:

f(x, y, z) = x′yz′ ∨ xy′z′ ∨ x′yz ∨ axy′z ∨ xyz′ ∨ axyz,

and

f(x, y, z) = (x ∨ y ∨ z)(x ∨ y ∨ z′)(a ∨ x′ ∨ y ∨ z′)(a ∨ x′ ∨ y′ ∨ z′).

31. Exercise
Let f : B4 7→ B, defined by:

f(a, b, x, y, z) = axy ∨ bxy′ ∨ b′x′y ∨ a′x′y′.

Prove that:
f(a, b, x, y) = f(x, y, a, b) = f(a, b′, y, x) =

= f(a′, b′, x′, y′) = f(x, y′, b, a) = f(x′, y′, a′, b′).

116 CHAPTER 5. BOOLEAN ALGEBRAS

5.3 Boolean equations

As usual, {B, ∨, ·, ′, 0, 1} is a Boolean algebra.

32. Definition
By a Boolean equation in n unknowns we mean an equation of the

form

f(X) = g(X),

where f and g are Boolean functions of n variables.
The vector X = (x1, .., xn) is the unknown. A solution of the equation

is any vector Xo such that f(Xo) = g(Xo).
By a Boolean inequality in n unknowns we mean an inequality of

the form

f(X) ≤ g(X),

with f and g as above; of course, a solution of the inequality is any vector
Xo such that f(Xo) ≤ g(Xo).

By a system of Boolean equations in n unknowns we mean a system
of the form:

fi(X) = gi(X), ∀i ∈ {1, 2, .., m},
where, for every i ∈ {1, 2, ..,m}, fi and gi are Boolean functions of n variables.

A solution of the system is any vector Xo which satisfies all the equations
of the system.

Analogously is defined the system of Boolean inequalities.
To solve a Boolean equation (or system, etc,) it means to determine all

the solutions.
An equation (or system, etc) is called consistent if it has at least a

solution (or, equivalently, the set of all its solutions is non-empty). Otherwise,
the equation (or system, etc) is called inconsistent.

Two equations (or systems, etc) are said to be equivalent if they have
the same sets of solutions.

32. Theorem
Every Boolean equation of n unknowns (or inequality, or system of equa-

tions, or system of inequalities) is equivalent to a single Boolean equation
of the form:

f(X) = 0,

5.3. BOOLEAN EQUATIONS 117

where f is a Boolean function of n variables.
Proof

Let us consider the Boolean equation

f(X) = g(X).

By using the equivalence: x = y ⇔ xy′ ∨ x′y = 0, (section 1, theorem 11,
(1.21′)) it results that the equation is equivalent with:

f(X)g′(X) ∨ f ′(X)g(X) = 0.

Let us consider now the inequality:

f(X) ≤ g(X).

By using the equivalence: x ≤ y ⇔ xy′ = 0, (section 1, theorem 11 (1.20′)),
it results that the inequality is equivalent with:

f(X)g′(X) = 0.

It results that every system of equations (or inequalities) is equivalent with
a system of equations of the form:

fi(X) = 0, ∀i ∈ {1, 2, ..,m}.
By using the equivalence x = y = 0 ⇔ x∨y = 0, (section 1,theorem 4 (1.9)),
it results that the system is equivalent with the single equation:

f1(X) ∨ ∨ fm(X) = 0.

As a consequence of the above theorem, we shall restrict our study (with-
out loss of generality) to equations of the form f(X) = 0.

33. Examples
(i) The equation

x ∨ yz′ = x ∨ z′

is equivalent with:

(x ∨ yz′)(x ∨ z′)′ ∨ (x ∨ yz′)′(x ∨ z′) = 0,

(x ∨ yz′)x′z ∨ x(y′ ∨ z)(x ∨ z′) = 0,

118 CHAPTER 5. BOOLEAN ALGEBRAS

xy′ ∨ xy′z′ ∨ xz = 0,

xy′ ∨ xz = 0,

(ii) The system:
x′ ∨ yz ≤ xz′, xy ∨ z′ = 1,

is equivalent with:

(x′ ∨ yz)(xz′)′ = 0, (xy ∨ z′)′ = 0,

x′ ∨ yz = 0, x′z ∨ y′z = 0.

Of course, in this moment we can solve the system:

x′ = 0, yz = 0, y′z = 0,

and the solution is:
x = 1, z = 0, y ∈ B.

34. Exercise
Let a, b, c, p, r, s ∈ B; then the equation:

ax ∨ bx′ ∨ c = px ∨ rx′ ∨ s,

is equivalent with:

[(a ∨ c)p′s′ ∨ a′c′(p ∨ s)]x ∨ [(b ∨ c)r′s′ ∨ b′c′(r ∨ s)] = 0.

Solution
We put first both members of the equation in the canonical disjunctive

form, hence the equation is equivalent with:

(a ∨ c)x ∨ (b ∨ c)x′ = (p ∨ s)x ∨ (r ∨ s)x′.

Further:
[(a ∨ c)x ∨ (b ∨ c)x′][(p ∨ s)x ∨ (r ∨ s)x′]′·

·[(a ∨ c)x ∨ (b ∨ c)x′]′ [(p ∨ s)x ∨ (r ∨ s)x′] = 0.

We compute:

[(a ∨ c)x ∨ (b ∨ c)x′]′ = (a′c′ ∨ x′)(b′c′ ∨ x) =

5.3. BOOLEAN EQUATIONS 119

= a′c′x ∨ b′c′x′ ∨ a′b′c′.

Analogously:

[(p ∨ s)x ∨ (r ∨ s)x′]′ = p′s′x ∨ r′s′x ∨ p′r′s′.

Introducing the above expressions into the equation, we get the desired form.

35. Exercise
Let a, b ∈ B; then the system:

xy′ = ab′, x′y = a′b

is equivalent with the equation:

(a′b ∨ ab′)xy ∨ (a′ ∨ b)xy′ ∨ (a ∨ b′)x′y ∨ (ab′ ∨ a′b)x′y′ = 0.

Solution
The system is equivalent with:

xy′(ab′)′ ∨ (xy′)′ab′ = 0, x′y(a′b)′ ∨ (x′y)′a′b = 0;

by using De Morgan laws, we get:

xy′(a′ ∨ b) ∨ (x′ ∨ y)ab′ = 0, x′y(a ∨ b′) ∨ (x ∨ y′)a′b = 0.

We reduce to a single equation:

a′bx ∨ ab′x′ ∨ ab′y ∨ a′by′ ∨ (a′ ∨ b)xy′ ∨ (a ∨ b′x′y) = 0.

If we bring the left member of this equation to the canonical disjunctive form,
then we get the required conclusion.

36. Exercise
Let a, b, c ∈ B; then the system:

a ≤ x, b ≤ y, xy = c,

is equivalent with:

c′xy ∨ (b ∨ c)xy′ ∨ (a ∨ c)x′y ∨ (a ∨ b ∨ c)x′y′ = 0.

120 CHAPTER 5. BOOLEAN ALGEBRAS

Solution
The system is equivalent with the system:

ax′ = 0, by′ = 0, c′xy ∨ cx′ ∨ cy′ = 0,

hence, by reducing to a single equation, we get:

(a ∨ c)x′ ∨ (b ∨ c)y′ ∨ c′xy = 0.

The canonical disjunctive form of the left member of the above equation is
the required form of the equation.

37. Exercises
Reduce the following systems to a single equation of the form

f(X) = 0.

(i) yz = a ∨ bc, zx = b ∨ ca, xy = c ∨ ab.
(ii) xy = a, x ∨ y = b.
(iii) x(y ∨ z) = b ∨ c, y(z ∨ x) = c ∨ a, z(x ∨ y) = a ∨ b.

We shall study now the Boolean equation in one unknown, written
in the canonical disjunctive form:

ax ∨ bx′ = 0.

If we denote f(x) = ax ∨ bx′, then we have a = f(1) and b = f(0).

38. Lemma
The following assertions are equivalent:

(i) ax ∨ bx′ = 0.
(ii) b ≤ x ≤ a′.
(iii) x = a′x ∨ bx′.
Proof

(i)⇒ (ii). The equality:

ax ∨ bx′ = 0

is equivalent (see theorem 4(1.9)) with the equalities:

ax = 0 and bx′ = 0,

5.3. BOOLEAN EQUATIONS 121

which are equivalent (see section1, theorem 11(1.20′)) with:

x ≤ a′ and b ≤ x,

hence we proved (ii).
(ii) ⇒(iii). From the inequalities:

b ≤ x and x ≤ a′,

we get:
bx′ = 0 and a′x = x,

hence:
a′x ∨ bx′ = x ∨ 0 = x,

which proves (iii).
(iii)⇒(i) By conjugation with x′ and with ax of the equality:

x = a′x ∨ bx′,

we deduce (respectively):

0 = bx′ and ax = 0,

hence:
ax ∨ bx′ = 0.

39. Theorem
The Boolean equation in one unknown:

ax ∨ bx′ = 0

is consistent if and only if
ab = 0.

If this condition is satisfied, then the set of all the solutions of the equation
is the interval:

x ∈ [b, a′],

or, equivalently, in a parametric form:

x = a′t ∨ b, where t ∈ B.

122 CHAPTER 5. BOOLEAN ALGEBRAS

Proof
Let us assume that the equation is consistent, hence there is xo ∈ B such

that:
axo ∨ bx′o = 0.

From the above lemma we get b ≤ a′, hence:

ab = 0.

Conversely if ab = 0, then x = b is a solution of the equation:

ab ∨ bb′ = 0.

Let us now suppose that the condition ab = 0 is fulfilled. The fact that
the set of all the solutions is the interval [b, a′] was proved in the above lemma.
To prove the parametric formula of the solutions, let us consider an arbitrary
t ∈ B; then x = a′t ∨ b is a solution:

a(a′t ∨ b) ∨ b(a′t ∨ b)′ = ab ∨ b(a′t)′b′ = 0,

because ab = 0.
Conversely, if x ∈ B is an arbitrary solution of the equation, then, by lemma
8 we have:

b ≤ x ≤ a′,

hence x can be written as:

x = x ∨ b = a′x ∨ b.

It results that there is t ∈ B such that x = a′t ∨ b; in fact, t = x.

We apply now the above method to solve several equations (inequalities)
in one unknown.

40. Examples
(i) Solve the inequality:

x ∨ c ≥ s

The inequality is equivalent with the equation:

(x ∨ c)′s = 0,

5.3. BOOLEAN EQUATIONS 123

hence we must solve:
sc′x′ = 0.

We observe that the consistency condition is fulfilled:

0 · (sc′) = 0.

The solution is:
x ∈ [sc′, 1],

or, in parametric form:
x = t ∨ sc′, t ∈ B.

(ii) Let us consider the equation:

x ∨ c = s,

which is equivalent with:

s′x ∨ s′c ∨ sc′x′ = 0,

or, in the canonical disjunctive form:

s′x ∨ (s′c ∨ sc′)x′ = 0.

The consistency condition is:
s′c = 0,

which is not always fulfilled; if it holds, the solution is:

x ∈ [sc′, s],

or in parametric form:
x = st ∨ sc′, t ∈ B.

(iii) Let us solve the equation:

ax = s.

It is equivalent with:
(s′a ∨ sa′)x ∨ sx′ = 0.

The consistency condition is:
sa′ = 0.

124 CHAPTER 5. BOOLEAN ALGEBRAS

If the above condition is satisfied, the solution is:

x ∈ [s, s ∨ a′],

or, in parametric form:

x = (s ∨ a′)t ∨ s, t ∈ B.

(iv) More generally, let us solve the equation:

ax ∨ c = s.

The equation is equivalent with:

[s′(a ∨ c) ∨ sa′c′]x ∨ (s′c ∨ sc′)x′ = 0.

The consistency condition is:

s′c ∨ a′c′s = 0,

and the solution (if the above condition holds) is:

x ∈ [sc′, s ∨ a′],

or, in parametric form:

x = (s ∨ a′)t ∨ sc′, t ∈ B.

(v) Let us solve now:
ax ∨ bx′ ∨ c = 0.

The canonical disjunctive form is (see section 2,example 6(i)):

(a ∨ c)x ∨ (b ∨ c)x′ = 0.

The equation is consistent if and only if:

(a ∨ c)(b ∨ c) = 0,

or:
ab ∨ c = 0,

5.3. BOOLEAN EQUATIONS 125

hence:
ab = 0 and c = 0.

If these conditions are satisfied, the solution is:

x ∈ [b, a′],

or, equivalently:
x = a′t ∨ b, b ∈ B.

(vi) Let us solve the equation:

ax = bx.

The equation is equivalent with:

(ab′ ∨ a′b)x = 0,

which is always consistent; the solution is:

x ∈ [0, ab ∨ a′b′],

or, in parametric form:

x = (ab ∨ a′b′)t, t ∈ B.

41. Example
Let us solve now the general equation:

ax ∨ bx′ ∨ c = px ∨ rx′ ∨ s.

The canonical disjunctive form is (see example 40):

[(a ∨ c)p′s′ ∨ a′c′(p ∨ s)]x ∨ [(b ∨ c)r′s′ ∨ b′c′(r ∨ s)] = 0.

The consistency condition is:

(ab ∨ c)p′r′s′ ∨ ab′c′p′rs′ ∨ a′bc′pr′s′ ∨ a′b′c′(pr ∨ s) = 0.

If this condition is fulfilled, the solution is:

x ∈ [(b ∨ c)r′s′ ∨ b′c′(r ∨ s), a′c′p′s′ ∨ (a ∨ c)(p ∨ s),

126 CHAPTER 5. BOOLEAN ALGEBRAS

or, in parametric form:

x = [a′c′p′s′ ∨ (a ∨ c)(p ∨ s)]t ∨ (b ∨ c)r′s′ ∨ b′c′(r ∨ s).

We now return to the case of several variables. The consistency condition
is given in the following theorem.

42. Theorem
Let f : Bn 7→ B, be a Boolean function of n variables. The equation (in

n unknowns):

f(X) = 0

is consistent if and only if:

∧

A∈{0,1}n

f(A) = 0.

The result is a generalization to n variables of the consistency condition of
the case of a single variable.

43. Examples
(i) Let us consider the general equation in two unknowns:

axy ∨ bxy′ ∨ cx′y ∨ dx′y′.

The consistency condition is:

abcd = 0

(ii) Let us consider the equation:

cxy ∨ ayz ∨ bxz = 0.

If we denote:

f(x, y, z) = cxy ∨ ayz ∨ bxz,

then the consistency condition is:

f(0, 0, 0)f(0, 0, 1)f(0, 1, 0)f(1, 0, 0)f(1, 1, 0)f(1, 0, 1)f(0, 1, 1)f(1, 1, 1) = 0.

5.3. BOOLEAN EQUATIONS 127

We have:

f(0, 0, 0) = 0, f(0, 0, 1) = 0, f(0, 1, 0) = 0, f(1, 0, 0) = 0,

f(1, 1, 0) = c, f(1, 0, 1) = b, f(0, 1, 1) = a, f(1, 1, 1) = a ∨ b ∨ c.

The canonical disjunctive form for f is:

f(x, y, z) = cxyz′ ∨ bxy′z ∨ ax′yz ∨ (a ∨ b ∨ c)xyz,

and the consistency condition for the equation f(x, y, z) = 0 is always true.

44. Proposition
The range of a Boolean function of n variables:

f : Bn 7→ B

is the interval:
f (Bn) = [

∧

A∈{0,1}n

f(A) ,
∨

A∈{0,1}n

f(A)].

Proof
It was shown (see section 2,corollary 5) that

f(X) ∈ [
∧

A∈{0,1}n

f(A) ,
∨

A∈{0,1}n

f(A)], ∀X ∈ Bn.

To prove the converse, we have to prove that for every

c ∈ [
∧

A∈{0,1}n

f(A) ,
∨

A∈{0,1}n

f(A)],

the equation
f(X) = c

is consistent. The above equation is equivalent with:

c′f(X) ∨ cf ′(X) = 0.

By using theorem 12, the consistency condition for this equation is:

∧

A∈{0,1}n

[c′f(A) ∨ cf ′(A)] = 0,

128 CHAPTER 5. BOOLEAN ALGEBRAS

which is equivalent with:

c′
∧

A∈{0,1}n

f(A) ∨ c
∧

A∈{0,1}n

f ′(A) = 0.

This last equality is fulfilled because:

∧

A∈{0,1}n

f(A) ≤ c ⇔ c′
∧

A∈{0,1}n

f(A) = 0,

and:
c ≤

∨

A∈{0,1}n

f(A) ⇔ c
∧

A∈{0,1}n

f ′(A) = 0.

The main result for solving Boolean equations in several variables is the
method of successive eliminations, which is presented below.

45. Theorem (the method of successive eliminations)
Let f : Bn 7→ B be a Boolean function and let

f(X) = 0

be the associated Boolean equation.
For every p ∈ {1, 2, .., n}, we define:

fp(x1, .., xp) =
∧

(αp+1,..,αn)∈{0,1}n−p

f(x1, .., xp, αp+1, .., αn),

thus, in particular, we have:

fn(x1, .., xn) = f(x1, .., xn),

fn−1(x1, .., xn−1) = f(x1, .., xn−1, 0)f(x1, .., xn−1, 1).

The method (algorithm) starts with the equation f(X) = 0, written as:

fn(x1, .., xn) = 0.

We write this equation in the equivalent form:

fn(x1, ..xn−1, 1)xn ∨ f(x1, .., xn−1, 0)x′n = 0.

5.3. BOOLEAN EQUATIONS 129

If we consider the above equation as an equation in the single variable xn,
then its solution is:

fn(x1, .., xn−1, 0) ≤ xn ≤ f ′n(x1, .., xn−1, 1),

if and only if the consistency condition holds:

fn(x1, .., xn−1, 1) · f(x1, .., xn−1, 0) = 0.

But the above equation (in the unknowns x1, .., xn−1) is precisely:

fn−1(x1, .., xn−1) = 0.

By repeating the above step n− 1 times, we finally get the equation:

f1(x1) = 0,

whose solution is:
f1(0) ≤ x1 ≤ f ′1(1),

if and only if the consistency condition holds:

f1(0) · f1(1) = 0.

It can be proved that the original equation

f(X) = 0

is consistent if and only if f1(0)f1(1) = 0. If this condition is fulfilled, the
solutions can be written as recurrent inequalities:

fp(x1, .., xp−1, 0) ≤ xp ≤ f ′p(x1, .., xp−1, 1), ∀p = 1, 2, ..n,

or, equivalently, in recurrent parametric form:

xp = f ′p(x1, .., xp−1, 1)tp ∨ fp(x1, .., xp−1, 0), ∀tp ∈ B, ∀p = 1, 2, .., n.

46. Example
Let us apply the method of successive eliminations to solve the general

Boolean equation in two unknowns:

axy ∨ bxy′ ∨ cx′y ∨ dx′y′ = 0.

130 CHAPTER 5. BOOLEAN ALGEBRAS

We have:
f2(x, y) = f(x, y),

which can be written in the equivalent form:

(ax ∨ cx′)y ∨ (bx ∨ dx′)y′ = 0

The solution is:

bx ∨ dx′ ≤ y ≤ (ax ∨ cx′)′ = a′x ∨ c′x′,

provided the consistency condition holds:

(ax ∨ cx′)(bx ∨ dx′) = 0.

This last equation in x is equivalent with:

abx ∨ cdx′ = 0.

The consistency condition is:
abcd = 0

and the solution is:
cd ≤ x ≤ a′ ∨ b′,

bx ∨ dx′ ≤ y ≤ a′x ∨ c′x′.

47. Example
(i) Let us solve the system:

xy′ = ab′, x′y = a′b.

It was shown in exercise 5 that the system is equivalent with the equation:

(a′b ∨ ab′)xy ∨ (a′ ∨ b)xy′ ∨ (a ∨ b′)x′y ∨ (ab′ ∨ a′b)x′y′ = 0.

To reduce y, we write the equation as:

[(ab′ ∨ a′b)x ∨ (a ∨ b′)x′]y ∨ [(a′ ∨ b)x ∨ (ab′ ∨ a′b)x′]y′ = 0.

The consistency condition for the above equation is:

[(ab′ ∨ a′b)x ∨ (a ∨ b′)x′][(a′ ∨ b)x ∨ (ab′ ∨ a′b)x′] = 0,

5.3. BOOLEAN EQUATIONS 131

hence the equation in x is:

[(a′b ∨ ab′)(a′ ∨ b)]x ∨ [(a ∨ b′)(ab′ ∨ a′b)]x′ = 0,

or in equivalent form:
a′bx ∨ ab′x′ = 0.

The consistency condition is always fulfilled:

ab′ · a′b = 0.

The solution is:
ab′ ≤ x ≤ a ∨ b′.

We return now to the equation in y, which can be written as:

[ab′x ∨ (a ∨ b′)x′]y ∨ [(a′ ∨ b)x ∨ a′bx′]y′ = 0,

because, from the original system we get:

ab′x′ = 0 and a′bx = 0.

The solution is:

(a′ ∨ b)x ∨ a′bx′ ≤ y ≤ [ab′x ∨ (a ∨ b′)x′]′,

or, in equivalent form,

(a′ ∨ b)x ∨ (a′b)x′ ≤ y ≤ (a′ ∨ b)x ∨ a′b.

By using the identity:

(a′ ∨ b)x ∨ (a′b)x′ = (a′ ∨ b)x ∨ a′b,

we get:
y = (a′ ∨ b)x ∨ a′b.

Finally, the system has the solutions:

x ∈ [ab′ , a ∨ b′],

y = (a′ ∨ b)x ∨ a′b,

132 CHAPTER 5. BOOLEAN ALGEBRAS

or, in parametric form:
x = (a ∨ b′)t ∨ ab′,

y = (a′ ∨ b)[(a ∨ b′)t ∨ ab′] ∨ a′b = (a′ ∨ b)t ∨ a′b, t ∈ B.

(ii) Let us solve now the same system

xy′ = ab′, x′y = a′b,

in the Boolean subalgebra generated by the elements a and b, (see section 1,
example 17(ii)). The intersection of the Boolean subalgebra generated by a
and b and the interval [ab′ , a ∨ b′] is the set:

{ab′ , a , b′ , a ∨ b′}.

It results that the solutions of the system in this case are:

x1 = ab′, y1 = a′b,

x2 = a, y2 = b,

x3 = b′, y3 = a′,

x4 = a ∨ b′, y4 = a′ ∨ b.

48. Exercise
(i) Let us solve the system:

a ≤ x, b ≤ y, xy = c.

It was shown in exercise 6 that the above system is equivalent with the
equation:

c′xy ∨ (b ∨ c)xy′ ∨ (a ∨ c)x′y ∨ (a ∨ b ∨ c)x′y′ = 0,

which can be written as:

[c′x ∨ (a ∨ c)x′]y ∨ [(b ∨ c)x ∨ (a ∨ b ∨ c)x′]y′ = 0.

The consistency condition gives the equation in x:

bc′x ∨ (a ∨ c)x′ = 0,

5.3. BOOLEAN EQUATIONS 133

whose consistency condition is:

abc′ = 0.

If this last condition holds, then solution is:

(a ∨ c) ≤ x ≤ b′ ∨ c.

By using the equality:
(a ∨ c)x′ = 0,

the equation in the unknown y is equivalent with:

c′xy ∨ [(b ∨ c)x ∨ bx′]y′ = 0,

or, equivalently:
c′xy ∨ (b ∨ cx)y′ = 0.

Finally, the solution is:
b ∨ cx ≤ y ≤ c ∨ x′.

(ii) Let us solve now the same system:

a ≤ x, b ≤ y, xy = c,

in the Boolean subalgebra generated by the elements a, b and c.
If the consistency condition is satisfied:

abc′ = 0,

then we have:
a ∨ c = abc ∨ ab′c ∨ ab′c′ ∨ a′bc ∨ a′b′c,

b′ ∨ c = a ∨ c ∨ a′b′c′.

It results that the intersection of the Boolean subalgebra generated by a,b,
and c with the interval [a ∨ c , b′ ∨ c] is the set:

{a ∨ c , b′ ∨ c}.

For x = a ∨ c, we get b ∨ c ≤ y ≤ a′ ∨ c. With the same method as above,
(or by using the symmetry a ↔ b), we obtain for y the solutions:

y = b ∨ c and y = a′ ∨ c.

134 CHAPTER 5. BOOLEAN ALGEBRAS

For x = b′ ∨ c, we get b ∨ c ≤ y ≤ b ∨ c, hence y = b ∨ c.
It results that the solutions of the system in the algebra generated by a, b
and c are:

x1 = a ∨ c, y1 = b ∨ c,

x2 = a ∨ c, y2 = a′ ∨ c,

x3 = b′ ∨ c, y3 = b ∨ c.

49. Exercise
(i) Find the solutions of the system:

yz = a ∨ bc, zx = b ∨ ca, xy = c ∨ ab.

(ii) Find the solutions of the above system in the algebra generated by a, b
and c.

5.3. BOOLEAN EQUATIONS 135

BIBLIOGRAPHY

1. W.W. Chen Discrete Mathematics, Imperial College University of
London, 2003.

2. M.B. Finan Lecture Notes in Discrete Mathematics, Arkansas Tech
University, 2008.

3. John Hopcroft , Jeffrey Ullman Introduction to Automata
Theory, Languages and Computation , Addison-Wesley, 1979.

4. S. Lang Undergraduate Algebra, Springer Verlag, 1987.

5. Lewis Harry R., C.Papadimitriou Elements of the theory of com-
putation, Prentice Hall, Englewood Cliffs,N.J. 1981.

6. I. Lovasz, K. Vesztergombi, Discrete Mathematics, Lecture Notes,
Yale University, Spring 1999.

7. S. Rudeanu Boolean Functions and Equations North-Holland, Ams-
terdam/London 1974; Kogaku Tosho, Tokyo, 1984.

8. Ju.A.Schreider Equality, Resemblance and Order,
Mir Publishers, 1974.

9. O.Stanasila Notiuni si tehnici de matematica discreta
Editura Stiintifica si Enciclopedica, Bucuresti, 1985.

